Demonstration of a Frequency Doubler Using a Tunnel Field-Effect Transistor with Dual Pocket Doping
Abstract
:1. Introduction
2. Device Parameters and Models
3. Result and Discussions
3.1. Dual Pocket Doping Effects
3.2. Current Matching at the Device Level
3.3. Frequency Doubler Operation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Louhi, J.; Räisänen, A.V.; Erickson, N. Cooled Schottky Varactor Frequency Multipliers at Submillimeter Wavelengths. IEEE Trans. Microw. Theory Tech. 1993, 41, 565–571. [Google Scholar] [CrossRef]
- Raisanen, A.V. Frequency Multipliers for Millimeter and Submillimeter Wavelengths. Proc. IEEE 1992, 80, 1842–1852. [Google Scholar] [CrossRef]
- Tolmunen, T.J.; Frerking, M.A. Theoretical Performance of Novel Multipliers at Millimeter and Submillimeter Wavelengths. Int. J. Infrared Millim. Waves 1991, 12, 1111–1133. [Google Scholar] [CrossRef]
- Louhi, J.; Räisänen, A. V On the Modeling and Optimization of Schottky Varactor Frequency Multipliers at Submillimeter Wavelengths. IEEE Trans. Microw. Theory Tech. 1995, 43, 922–926. [Google Scholar] [CrossRef]
- O’Ciardha, E.; Lidholm, S.U.; Lyons, B. Generic-Device Frequency-Multiplier Analysis-a Unified Approach. IEEE Trans. Microw. Theory Tech. 2000, 48, 1134–1141. [Google Scholar] [CrossRef]
- Abbasi, M.; Kozhuharov, R.; Karnfelt, C.; Angelov, I.; Kallfass, I.; Leuther, A.; Zirath, H. Single-Chip Frequency Multiplier Chains for Millimeter-Wave Signal Generation. IEEE Trans. Microw. Theory Tech. 2009, 57, 3134–3142. [Google Scholar] [CrossRef]
- Shim, D.; Kenneth, K.O. Symmetric Varactor in 130-Nm CMOS for Frequency Multiplier Applications. IEEE Electron Device Lett. 2011, 32, 470–472. [Google Scholar] [CrossRef]
- Cheng, C.; Huang, B.; Mao, X.; Zhang, Z.; Zhang, Z.; Geng, Z.; Xue, P.; Chen, H. A Graphene Based Frequency Quadrupler. Sci. Rep. 2017, 7, 46605. [Google Scholar] [CrossRef]
- Kim, T.W.; Ra, H.S.; Ahn, J.; Jang, J.; Taniguchi, T.; Watanabe, K.; Shim, J.W.; Lee, Y.T.; Hwang, D.K. Frequency Doubler and Universal Logic Gate Based on Two-Dimensional Transition Metal Dichalcogenide Transistors with Low Power Consumption. ACS Appl. Mater. Interfaces 2021, 13, 7470–7475. [Google Scholar] [CrossRef]
- Liang, B.-W.; Li, M.-F.; Lin, H.-Y.; Li, K.-S.; Chen, J.-H.; Shieh, J.-M.; Wu, C.-T.; Simbulan, K.B.; Su, C.-Y.; Kuan, C.-H.; et al. Dual-Mode Frequency Multiplier in Graphene-Base Hot Electron Transistor. Nanoscale 2023, 15, 2586–2594. [Google Scholar] [CrossRef]
- Mulaosmanovic, H.; Dünkel, S.; Trentzsch, M.; Beyer, S.; Breyer, E.T.; Mikolajick, T.; Slesazeck, S. Frequency Mixing with HfO2-Based Ferroelectric Transistors. ACS Appl. Mater. Interfaces 2020, 12, 44919–44925. [Google Scholar] [CrossRef] [PubMed]
- Madan, H.; Saripalli, V.; Liu, H.; Datta, S. Asymmetric Tunnel Field-Effect Transistors as Frequency Multipliers. IEEE Electron Device Lett. 2012, 33, 1547–1549. [Google Scholar] [CrossRef]
- Mulaosmanovic, H.; Breyer, E.T.; Mikolajick, T.; Slesazeck, S. Reconfigurable Frequency Multiplication with a Ferroelectric Transistor. Nat. Electron. 2020, 3, 391–397. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, S.; Park, B.G. Double-Gate TFET With Vertical Channel Sandwiched by Lightly Doped Si. IEEE Trans. Electron Devices 2019, 66, 1656–1661. [Google Scholar] [CrossRef]
- Han, T.; Liu, H.; Chen, S.; Wang, S.; Li, W. Design and Investigation of the High Performance Doping-Less TFET with Ge/Si0.6Ge0.4/Si Heterojunction. Micromachines 2019, 10, 424. [Google Scholar] [CrossRef]
- Kao, K.H.; Verhulst, A.S.; Vandenberghe, W.G.; Soree, B.; Groeseneken, G.; De Meyer, K. Direct and Indirect Band-to-Band Tunneling in Germanium-Based TFETs. IEEE Trans. Electron Devices 2012, 59, 292–301. [Google Scholar] [CrossRef]
- Avci, U.E.; Morris, D.H.; Hasan, S.; Kotlyar, R.; Kim, R.; Rios, R.; Nikonov, D.E.; Young, I.A. Energy Efficiency Comparison of Nanowire Heterojunction TFET and Si MOSFET at Lg = 13 nm, Including P-TFET and Variation Considerations. In Proceedings of the Technical Digest—International Electron Devices Meeting, IEDM, Washington, DC, USA, 9–11 December 2013; pp. 33.4.1–33.4.4. [Google Scholar]
- Musalgaonkar, G.; Sahay, S.; Saxena, R.S.; Kumar, M.J. Nanotube Tunneling FET with a Core Source for Ultrasteep Subthreshold Swing: A Simulation Study. IEEE Trans. Electron Devices 2019, 66, 4425–4432. [Google Scholar] [CrossRef]
- Singh, S.; Raman, A. Gate-All-Around Charge Plasma-Based Dual Material Gate-Stack Nanowire FET for Enhanced Analog Performance. IEEE Trans. Electron Devices 2018, 65, 3026–3032. [Google Scholar] [CrossRef]
- Anand, S.; Amin, S.I.; Sarin, R.K. Analog Performance Investigation of Dual Electrode Based Doping-Less Tunnel FET. J. Comput. Electron. 2016, 15, 94–103. [Google Scholar] [CrossRef]
- Singh, G.; Amin, S.I.; Anand, S.; Sarin, R.K. Design of Si0.5Ge0.5 Based Tunnel Field Effect Transistor and Its Performance Evaluation. Superlattices Microstruct. 2016, 92, 143–156. [Google Scholar] [CrossRef]
- Anam, A.; Amin, S.I.; Prasad, D.; Kumar, N.; Anand, S. Charge-Plasma-Based Inverted T-Shaped Source-Metal Dual-Line Tunneling FET with Improved Performance at 0.5 V Operation. Phys. Scr. 2023, 98, 095918. [Google Scholar] [CrossRef]
- Synopsys Inc. Sentaurus Process User Guide—v.P-2019.03; Synopsys: Mountain View, CA, USA, 2019. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.H.; Kim, H. Demonstration of a Frequency Doubler Using a Tunnel Field-Effect Transistor with Dual Pocket Doping. Electronics 2023, 12, 4932. https://doi.org/10.3390/electronics12244932
Kim JH, Kim H. Demonstration of a Frequency Doubler Using a Tunnel Field-Effect Transistor with Dual Pocket Doping. Electronics. 2023; 12(24):4932. https://doi.org/10.3390/electronics12244932
Chicago/Turabian StyleKim, Jang Hyun, and Hyunwoo Kim. 2023. "Demonstration of a Frequency Doubler Using a Tunnel Field-Effect Transistor with Dual Pocket Doping" Electronics 12, no. 24: 4932. https://doi.org/10.3390/electronics12244932
APA StyleKim, J. H., & Kim, H. (2023). Demonstration of a Frequency Doubler Using a Tunnel Field-Effect Transistor with Dual Pocket Doping. Electronics, 12(24), 4932. https://doi.org/10.3390/electronics12244932