Optimal Transshipment Route Planning Method Based on Deep Learning for Multimodal Transport Scenarios
Abstract
:1. Introduction
2. Optimal Transshipment Path Planning Method Based on Deep Learning; Algorithms for Multimodal Transport Scenarios
2.1. Intelligent Transportation System
2.2. Intelligent Navigation System
2.3. Optimal Route Planning
2.4. Optimal Path Based on Deep Learning
3. Optimal Transshipment Route Planning Method Based on Deep Learning; Experiment on Multimodal Transportation Scenarios
3.1. Simulation Experiment
3.2. Parameter
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Subramani, D.N.; Wei, Q.J.; Lermusiaux, P. Stochastic time-optimal path-planning in uncertain, strong, and dynamic flows. Comput. Methods Appl. Mech. Eng. 2018, 333, 218–237. [Google Scholar] [CrossRef]
- Hari, A.; Niesen, U.; Wilfong, G. On the Problem of Optimal Path Encoding for Software-Defined Networks. IEEE/ACM Trans. Netw. 2017, 25, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wu, J.; Dai, J. Optimal path planning with modified A-Star algorithm for stealth unmanned aerial vehicles in 3D network radar environment. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2022, 236, 72–81. [Google Scholar] [CrossRef]
- Ramasudha, K. Optimal Path Solution Using Dijkstra’s Algorithm for Practical 21 bus system. Int. J. Mod. Trends Sci. Technol. 2021, 6, 502–509. [Google Scholar] [CrossRef]
- Jian, Y.; Ni, J.; Yang, Y. Deep Learning Hierarchical Representations for Image Steganalysis. IEEE Trans. Inf. Forensics Secur. 2017, 12, 2545–2557. [Google Scholar]
- Chen, Y.; Lin, Z.; Xing, Z. Deep Learning-Based Classification of Hyperspectral Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 7, 2094–2107. [Google Scholar] [CrossRef]
- Shen, D.; Wu, G.; Suk, H.I. Deep Learning in Medical Image Analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. [Google Scholar] [CrossRef] [Green Version]
- Morsali, J.; Zare, K.; Hagh, M.T. Applying fractional order PID to design TCSC-based damping controller in coordination with automatic generation control of interconnected multi-source power system. Eng. Sci. Technol. Int. J. 2017, 20, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Du, Q.; Kim, A.M.; Zheng, Y. Modeling multimodal freight transportation scenarios in Northern Canada under climate change impacts. Res. Transp. Bus. Manag. 2017, 23, 86–96. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, R.; Zhu, Y. Optimal path-finding through mental exploration based on neural energy field gradients. Cogn. Neurodyn. 2017, 11, 99–111. [Google Scholar] [CrossRef] [Green Version]
- Zhihan, L.; Yu, L.; Hailin, F.; Haibin, L. Deep learning for Security in Digital Twins of Cooperative Intelligent Transportation Systems. IEEE Trans. Intell. Transp. Syst. 2021, 23, 16666–16675. [Google Scholar]
- Chen, C.H. A Cell Probe-based Method for Vehicle Speed Estimation. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2020, 103, 265–267. [Google Scholar] [CrossRef]
- Song, H.; Srinivasan, R.; Sookoor, T.; Jeschke, S. Smart Cities: Foundations, Principles and Applications; Wiley: Hoboken, NJ, USA, 2017; pp. 1–906. ISBN 978-1-119-22639-0. [Google Scholar]
- Lu, Y.; Yao, S.; Yao, Y. Research on the Intelligent Assignment Model of Urban Traffic Planning Based on Optimal Path Optimization Algorithm. Sci. Program. 2022, 2022, 3002923. [Google Scholar] [CrossRef]
- Ravichandran, H.; Hota, S. Collision Avoidance with Optimal Path Replanning of Fixed-Wing Unmanned Aerial Vehicles. J. Guid. Control Dyn. 2021, 44, 2118–2125. [Google Scholar] [CrossRef]
- Zhu, X.X.; Tuia, D.; Mou, L. Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2018, 5, 8–36. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Gao, L.; Mao, S. CSI Phase Fingerprinting for Indoor Localization with a Deep Learning Approach. IEEE Internet Things J. 2017, 3, 1113–1123. [Google Scholar] [CrossRef]
- Polson, N.G.; Sokolov, V.O. Deep learning for short-term traffic flow prediction. Transp. Res. Part C Emerg. Technol. 2017, 79, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Lv, Z.; Li, X.; Wang, W.; Zhang, B.; Hu, J.; Feng, S. Government Affairs Service Platform for Smart City. Future Gener. Comput. Syst. 2018, 22, 4281–4290. [Google Scholar] [CrossRef]
- Lv, Z.; Zhang, S.; Xiu, W. Solving the Security Problem of Intelligent Transportation System with Deep Learning. IEEE Trans. Intell. Transp. Syst. 2020, 22, 4281–4290. [Google Scholar] [CrossRef]
- Lv, Z.; Chen, D.; Wang, Q. Diversified Technologies in Internet of Vehicles under Intelligent Edge Computing. IEEE Trans. Intell. Transp. Syst. 2020, 22, 2048–2059. [Google Scholar] [CrossRef]
- Lv, Z.; Ranran, L.; Amit, K.S. AI Empowered Communication Systems for Intelligent Transportation Systems. IEEE Trans. Intell. Transp. Syst. 2020, 22, 4579–4587. [Google Scholar] [CrossRef]
- Goh, G.B.; Hodas, N.O.; Vishnu, A. Deep Learning for Computational Chemistry. J. Comput. Chem. 2017, 38, 1291–1307. [Google Scholar] [CrossRef] [PubMed]
- Lee, J. Integration of Digital Twin and Deep Learning in Cyber-Physical Systems. Towards Smart Manuf. 2020, 38, 901–910. [Google Scholar]
- Majumder, N.; Poria, S.; Gelbukh, A. Deep Learning-Based Document Modeling for Personality Detection from Text. IEEE Intell. Syst. 2017, 32, 74–79. [Google Scholar] [CrossRef]
- Codella, N.; Nguyen, Q.B.; Pankanti, S. Deep Learning Ensembles for Melanoma Recognition in Dermoscopy Images. IBM J. Res. Dev. 2017, 61, 5:1–5:15. [Google Scholar] [CrossRef] [Green Version]
- June-Goo, L.; Sanghoon, J.; Young-Won, C. Deep Learning in Medical Imaging: General Overview. Korean J. Radiol. 2017, 18, 570–584. [Google Scholar]
- Sun, X.; Wu, P.; Hoi, S. Face Detection using Deep Learning: An Improved Faster RCNN Approach. Neurocomputing 2018, 299, 42–50. [Google Scholar] [CrossRef]
Shipping Method | Cost | Speed | Fuel Consumption | Power | Fuel Emissions | Power Emissions |
---|---|---|---|---|---|---|
Highway | 35 | 90 | 1 | NULL | 500 | NULL |
Waterway | 18 | 40 | 0.6 | 1 | NULL | 10 |
Railway | 20 | 75 | 0.6 | 1 | NULL | 10 |
Aviation | 145 | 600 | 10 | 10 | NULL | 10 |
Shipping Method | Highway | Waterway | Railway | Aviation |
---|---|---|---|---|
Highway | NULL | 40 | 35 | 50 |
Waterway | 40 | NULL | 50 | 50 |
Railway | 35 | 50 | NULL | 50 |
Aviation | 50 | 50 | 50 | NULL |
City | Bus Station | Port | Train Station | Airport |
---|---|---|---|---|
1 | 16.88 | 9.83 | 19.82 | 17.98 |
2 | 42.98 | 38.93 | 44.92 | 32.96 |
3 | 68.96 | 60.97 | 70.96 | 58.94 |
4 | 96.78 | 93.75 | 98.70 | 97.87 |
5 | 8.70 | 3.62 | 39.61 | 9.80 |
6 | 36.68 | 28.61 | 39.62 | 36.76 |
City | Bus Station | Port | Train Station | Airport |
---|---|---|---|---|
7 | 69.58 | 62.55 | 65.50 | 68.67 |
8 | 24.38 | 20.37 | 36.37 | 24.48 |
9 | 65.37 | 60.34 | 66.35 | 63.46 |
10 | 96.38 | 93.45 | 98.30 | 86.39 |
11 | 44.33 | 40.18 | 46.20 | 44.30 |
12 | 84.14 | 80.4 | 86.5 | 85.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Qin, J.; Li, J.; Wu, M.; Zhou, S.; Feng, L. Optimal Transshipment Route Planning Method Based on Deep Learning for Multimodal Transport Scenarios. Electronics 2023, 12, 417. https://doi.org/10.3390/electronics12020417
Wang P, Qin J, Li J, Wu M, Zhou S, Feng L. Optimal Transshipment Route Planning Method Based on Deep Learning for Multimodal Transport Scenarios. Electronics. 2023; 12(2):417. https://doi.org/10.3390/electronics12020417
Chicago/Turabian StyleWang, Pengjun, Jiahao Qin, Jiucheng Li, Meng Wu, Shan Zhou, and Le Feng. 2023. "Optimal Transshipment Route Planning Method Based on Deep Learning for Multimodal Transport Scenarios" Electronics 12, no. 2: 417. https://doi.org/10.3390/electronics12020417
APA StyleWang, P., Qin, J., Li, J., Wu, M., Zhou, S., & Feng, L. (2023). Optimal Transshipment Route Planning Method Based on Deep Learning for Multimodal Transport Scenarios. Electronics, 12(2), 417. https://doi.org/10.3390/electronics12020417