Research on an Improved Detection Algorithm Based on YOLOv5s for Power Line Self-Exploding Insulators
Abstract
:1. Introduction
2. Materials and Methods
2.1. YOLOv5s Algorithm
2.2. YOLOv5s Algorithm Improvement
2.2.1. BiFPN Module
- (1)
- Unbounded fusion:
- (2)
- Softmax-based fusion:
- (3)
- Fast normalized fusion:
2.2.2. SPD Module
2.2.3. CBAM Attention Mechanism
2.2.4. SimAM No Attention Mechanism
3. Experimentation and Result Analysis
3.1. Data Preparation
3.2. Experimental Environment
3.3. Evaluation Indicators
3.4. Result Analysis
3.4.1. YOLOv5s Compared with Other YOLO Algorithms
3.4.2. Comparing the Improved YOLOv5s with Other State-of-the-Art Algorithms
3.4.3. Impact of Improved YOLOv5s on Model Performance
- (1)
- Improved multi-target detection accuracy
- (2)
- Improved detection accuracy of confusing target
- (3)
- Improved detection accuracy of remote small targets
- (4)
- Improved detection accuracy of incomplete targets
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, L.; Fan, J.; Liu, Y.; Li, E.; Peng, J.; Liang, Z. A Review on State-of-the-Art Power Line Inspection Techniques. IEEE Trans. Instrum. Meas. 2020, 69, 9350–9365. [Google Scholar] [CrossRef]
- Zhong, H.; Liu, Y.; Wei, J.; Fu, Q.; Yi, B. A real-time railway fastener inspection method using the lightweight depth estimation network. Measurement 2022, 189, 110613. [Google Scholar] [CrossRef]
- Meng, F.; Xu, B.; Zhang, T.; Muthu, B.; Sivaparthipan, C.B. Application of AI in image recognition technology for power line inspection. Energy Syst. 2021, 2021, 3073248. [Google Scholar]
- Arun, R.A.; Umamaheswari, S. Effective and efficient multi-crop pest detection based on deep learning object detection models. J. Intell. Fuzzy Syst. 2022, 43, 5185–5203. [Google Scholar] [CrossRef]
- Lan, Y.; Xu, W. Insulator defect detection algorithm based on a lightweight network. J. Phys. Conf. Ser. 2022, 2181, 12007. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, Y.; Xin, M.; Liao, J.; Xie, Q. A Light-Weight Network for Small Insulator and Defect Detection Using UAV Imaging Based on Improved YOLOv5. Sensors 2023, 23, 5249. [Google Scholar] [CrossRef]
- Wang, J.; Liu, G.; Yuan, J.; Wei, G. Image fusion technology and application in power inspection. Tech. Autom. Appl. 2019, 38, 4. [Google Scholar]
- Taylor, T.; Lanovaz, M.J. Agreement between visual inspection and objective analysis methods: A replication and extension. J. Appl. Behav. Anal. 2022, 55, 986–996. [Google Scholar] [CrossRef]
- Niu, S.; Zhou, X.; Zhou, D.; Yang, Z.; Liang, H.; Su, H. Fault Detection in Power Distribution Networks Based on Comprehensive-YOLOv5. Sensors 2023, 23, 6410. [Google Scholar] [CrossRef]
- Wang, D.; Sun, J.; Zhang, T. Self-explosion defect detection method of glass insulator based on improved generative adversarial network. High Volt. Eng. 2022, 48, 1096–1103. [Google Scholar]
- Miao, X.; Liu, X.; Chen, J.; Zhuang, S.; Fan, J.; Jiang, H. Insulator Detection in Aerial Images for Transmission Line Inspection Using Single Shot Multibox Detector. IEEE Access 2019, 7, 9945–9956. [Google Scholar] [CrossRef]
- Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning Deep Features for Discriminative Localization. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2921–2929. [Google Scholar]
- Lv, B.; Gao, X.; Feng, S.; Yuan, J. Deep Learning Detection Algorithm for Surface Defects of Automobile Door Seals. Teh. Vjesn. 2022, 29, 1499–1506. [Google Scholar]
- Saranya, K.; Muniraj, C. A SVM Based Condition Monitoring of Transmission Line Insulators Using PMU for Smart Grid Environment. Power Energy Eng. 2016, 4, 47–60. [Google Scholar] [CrossRef]
- Li, R.; Zhang, Y.; Zhai, D. Pin Defect Detection of Transmission Line Based on Improved SSD. High Volt. Eng. 2021, 47, 3795–3802. [Google Scholar]
- Ding, J.; Cao, H.; Ding, X.; An, C. High Accuracy Real-Time Insulator String Defect Detection Method Based on Improved YOLOv5. Front. Energy Res. 2022, 10, 928164. [Google Scholar] [CrossRef]
- Zhao, M.; Chang, C.H.; Xie, W.; Xie, Z.; Hu, J. Cloud shape classification system based on multi-channel cnn and improved fdm. IEEE Access 2020, 8, 44111–44124. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, J.; Bao, X. Influence of pollution flashover on outdoor high-voltage power equipment and preventive measures. Mod. Manuf. Technol. Equip. 2021, 57, 138–140. [Google Scholar]
- Li, X.; Su, H.; Liu, G. Insulator Defect Recognition Based on Global Detection and Local Segmentation. IEEE Access 2020, 8, 59934–59946. [Google Scholar] [CrossRef]
- Vriesman, D.; Britto, A.S.; Zimmer, A.; Koerich, A.L.; Paludo, R. Automatic visual inspection of thermoelectric metal pipes. Signal Image Video Process. 2019, 13, 975–983. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv 2015, arXiv:1506.01497. [Google Scholar] [CrossRef]
- Lu, W.; Zhou, Z.; Ruan, X.; Yan, Z.; Cui, G. Insulator Detection Method Based on Improved Faster R-CNN with Aerial Images. In Proceedings of the 2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC), Nanjing, China, 6–8 August 2021; pp. 417–420. [Google Scholar]
- Wu, C.; Ma, X.; Kong, X.; Zhu, H. Research on insulator defect detection algorithm of transmission line based on CenterNet. PLoS ONE 2021, 16, e0255135. [Google Scholar] [CrossRef]
- Xia, H.; Yang, B.; Li, Y.; Wang, B. An improved center-net model for insulator defect detection using aerial im-agery. Sensors 2022, 22, 2850. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Liao, H.-Y.M.; Wu, Y.-H.; Chen, P.-Y.; Hsieh, J.-W.; Yeh, I.-H. CSPNet: A new backbone that can enhance learning capability of CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops 2020, Virtual, 14–19 June 2020; pp. 390–391. [Google Scholar]
- Jin, B.; Cruz, L.; Gonçalves, N. Deep facial diagnosis: Deep transfer learning from face recognition to facial diagnosis. IEEE Access 2020, 8, 123649–123661. [Google Scholar] [CrossRef]
- Li, Z.; Rao, Z.; Ding, L.; Ding, B.; Fang, J.; Ma, X. YOLOv5s-D: A Railway Catenary Dropper State Identification and Small Defect Detection Model. Appl. Sci. 2023, 13, 7881. [Google Scholar] [CrossRef]
- Stefenon, F.S.; Singh, G.; Souza, J.B.; Freire, R.Z. Optimized hybrid YOLOu-Quasi-ProtoPNet for insulators classification. IET Gener. Transm. Distrib. 2023, 17, 3501–3511. [Google Scholar] [CrossRef]
- Zhou, T. A lightweight improvement of YOLOv5 for insulator fault detection. J. Phys. Conf. Ser. 2023, 2492, 12029. [Google Scholar] [CrossRef]
- Qi, Y.; Li, Y.; Du, A. Research on an Insulator Defect Detection Method Based on Improved YOLOv5. Appl. Sci. 2023, 13, 5741. [Google Scholar] [CrossRef]
- Wu, J.; Zhou, Y. An Improved Few-Shot Object Detection via Feature Reweighting Method for Insulator Identification. Appl. Sci. 2023, 13, 6301. [Google Scholar] [CrossRef]
- Singh, G.; Stefenon, S.F.; Yow, K.C. Interpretable visual transmission lines inspections using pseudo-prototypical part network. Mach. Vis. Appl. 2023, 34, 41. [Google Scholar] [CrossRef]
- Souza, B.J.; Stefenon, S.F.; Singh, G.; Freire, R.Z. Hybrid-YOLO for classification of insulators defects in transmission lines based on UAV. Int. J. Electr. Power Energy Syst. 2023, 148, 108982. [Google Scholar] [CrossRef]
- Yuan, J.; Zheng, X.; Peng, L.; Qu, K.; Luo, H.; Wei, L.; Jin, J.; Tan, F. Identification method of typical defects in transmission lines based on YOLOv5 object detection algorithm. Energy Rep. 2023, 9, 323–332. [Google Scholar] [CrossRef]
- Wang, S.; Gao, L.; Hu, T.; Fu, D.; Liu, W. Component Detection of Overhead Transmission Line Based on CBAM-Efficient-YOLOv5. J. Phys. Conf. Ser. 2023, 2456, 12020. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, L.; Chen, Z.; Ji, Y.; Feng, H. A New Orientation Detection Method for Tilting Insulators Incorporating Angle Regression and Priori Constraints. Sensors 2022, 22, 9773. [Google Scholar] [CrossRef]
- Huang, Y.; Jiang, L.; Han, T.; Xu, S.; Liu, Y.; Fu, J. High-Accuracy Insulator Defect Detection for Overhead Transmission Lines Based on Improved YOLOv5. Appl. Sci. 2022, 12, 12682. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, X. Insulator self-shattering detection based on YOLOv5 under small sample conditions. J. Phys. Conf. Ser. 2022, 2378, 12073. [Google Scholar] [CrossRef]
- He, H.; Zhang, Z.; Jia, Q.; Huang, L.; Cheng, Y.; Chen, B. Wildfire detection for transmission line based on improved lightweight YOLO. Energy Rep. 2023, 9, 512–520. [Google Scholar] [CrossRef]
- Zhang, J.; Lei, J.; Qin, X.; Li, B.; Li, Z.; Li, H.; Zeng, Y.; Song, J. A Fitting Recognition Approach Combining Depth-Attention YOLOv5 and Prior Synthetic Dataset. Appl. Sci. 2022, 12, 11122. [Google Scholar] [CrossRef]
- Li, Y.; Zou, G.; Zou, H.; Zhou, C.; An, S. Insulators and Defect Detection Based on the Improved Focal Loss Function. Appl. Sci. 2022, 12, 10529. [Google Scholar] [CrossRef]
- Li, Y.; Ni, M.; Lu, Y. Insulator defect detection for power grid based on light correction enhancement and YOLOv5 model. Energy Rep. 2022, 8, 807–814. [Google Scholar] [CrossRef]
- Wang, Q.; Si, G.; Qu, K.; Gong, J.; Cui, L. Transmission Line Foreign Body Fault Detection Using Multi-Feature Fusion Based on Modified YOLOv5. J. Phys. Conf. Ser. 2022, 2320, 12028. [Google Scholar] [CrossRef]
- Xu, W.; Zhong, X.; Luo, M.; Weng, L.; Zhou, G. End-to-End Insulator String Defect Detection in a Complex Background Based on a Deep Learning Model. Front. Energy Res. 2022, 10, 928162. [Google Scholar] [CrossRef]
- Han, G.; He, M.; Gao, M.; Yu, J.; Liu, K.; Qin, L. Insulator Breakage Detection Based on Improved YOLOv5. Sustainability 2022, 14, 6066. [Google Scholar] [CrossRef]
- Huang, W.; Li, T.; Xiao, Y.; Wen, Y.; Deng, Z. Insulator Defect Detection Algorithm Based on Improved YOLOv5s; Guilin University of Electronic Technology (China): Guilin, China; Guangxi Normal University: Guilin, China, 2022. [Google Scholar]
- Neubeck, A.; Van Gool, L. Efficient non-maximum suppression. In Proceedings of the 18th International Conference on Pattern Recognition, Washington, DC, USA, 20–24 August 2006; Volume 3, pp. 850–855. [Google Scholar]
- Setio, A.A.; Ciompi, F.; Litjens, G.; Gerke, P.; Jacobs, C.; van Riel, S.J.; Wille, M.M.; Naqibullah, M.; Sanchez, C.I.; van Ginneken, B. Pulmonary nodule detection in CT images: False positive reduction using multi-view convolutional networks. IEEE Trans. Med. Imaging 2016, 35, 1160–1169. [Google Scholar] [CrossRef]
- Mollalo, A.; Rivera, K.M.; Vahedi, B. Artificial neural network modeling of novel coronavirus (COVID-19) incidence rates across the continental United States. Int. J. Environ. Res. Public Health 2020, 17, 4204. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 10781–10790. [Google Scholar]
- Sunkara, R.; Luo, T. No More Strided Convolutions or Pooling: A New CNN Building Block for Low-Resolution Images and Small Objects. arXiv 2022, arXiv:2208.03641. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Yang, L.; Zhang, R.Y.; Li, L.; Xie, X. Simam: A simple, parameter-free attention module for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, Virtual, 18–24 July 2021; pp. 11863–11874. [Google Scholar]
- Müller, K.R.; Mika, S.; Tsuda, K.; Schölkopf, K. An introduction to kernel-based learning algorithms. In Handbook of Neural Network Signal Processing; CRC Press: Boca Raton, FL, USA, 2018; pp. 4–16. [Google Scholar]
Parameter | Configuration |
---|---|
GPU | NVIDIA GeForce RTX3050 (4G) |
Cuda | 12.2 |
Python | 3.9.12 |
Torch | 1.11 |
Image size | 320 * 320 |
Batch size | 8 |
Epochs | 300 |
Learning rate (initial) | 0.01 |
Learning rate (final) | 0.2 |
Model | Base Model | P | R | mAP |
---|---|---|---|---|
Yolov5n | CSPDarknet53 | 0.955 | 0.870 | 0.861 |
Yolov5s | CSPDarknet53 | 0.958 | 0.874 | 0.865 |
Yolov5m | CSPDarknet53 | 0.957 | 0.872 | 0.864 |
Yolov5l | CSPDarknet53 | 0.958 | 0.871 | 0.863 |
Yolov5x | CSPDarknet53 | 0.957 | 0.875 | 0.862 |
Yolov6s | EfficientRep | 0.955 | 0.873 | 0.863 |
Yolov8s | CSPDarknet53 | 0.957 | 0.874 | 0.864 |
Model | Base Model | P | R | mAP |
---|---|---|---|---|
Faster-RCNN | Resnet-50 | 0.572 | 0.901 | 0.861 |
SSD | VGG-SSD | 0.956 | 0.621 | 0.852 |
YOLOv3 | CSPDarknet53 | 0.944 | 0.842 | 0.895 |
YOLOv3-tiny | Darknet53-tiny | 0.909 | 0.821 | 0.862 |
Yolov5s + BiFPN + SPD + CBAM | CSPDarknet53 | 0.978 | 0.883 | 0.890 |
Model | Complication | P | R | mAP | |||
---|---|---|---|---|---|---|---|
BiFPN | SPD | CBAM | SimAM | ||||
Yolov5s | × | × | × | × | 0.958 | 0.874 | 0.865 |
Yolov5s + BiFPN | √ | × | × | × | 0.961 | 0.886 | 0.877 |
Yolov5s + SPD | × | √ | × | × | 0.944 | 0.893 | 0.873 |
Yolov5s + CBAM | × | × | √ | × | 0.949 | 0.889 | 0.876 |
Yolov5s + SimAM | × | × | × | √ | 0.951 | 0.904 | 0.869 |
Yolov5s + BiFPN + SPD | √ | √ | × | × | 0.949 | 0.880 | 0.878 |
Yolov5s + BiFPN + CBAM | √ | × | √ | × | 0.955 | 0.886 | 0.874 |
Yolov5s + BiFPN + SimAM | √ | × | × | √ | 0.954 | 0.884 | 0.869 |
Yolov5s + SPD + CBAM | × | √ | √ | × | 0.930 | 0.879 | 0.877 |
Yolov5s + SPD + SimAM | × | √ | × | √ | 0.974 | 0.865 | 0.88 |
Yolov5s + BiFPN + SPD + CBAM | √ | √ | √ | × | 0.978 | 0.883 | 0.89 |
Yolov5s + BiFPN + SPD + SimAM | √ | √ | × | √ | 0.964 | 0.866 | 0.865 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, C.; Min, S.; Liu, X.; Zhou, X.; Zhang, H. Research on an Improved Detection Algorithm Based on YOLOv5s for Power Line Self-Exploding Insulators. Electronics 2023, 12, 3675. https://doi.org/10.3390/electronics12173675
Hu C, Min S, Liu X, Zhou X, Zhang H. Research on an Improved Detection Algorithm Based on YOLOv5s for Power Line Self-Exploding Insulators. Electronics. 2023; 12(17):3675. https://doi.org/10.3390/electronics12173675
Chicago/Turabian StyleHu, Caiping, Shiyu Min, Xinyi Liu, Xingcai Zhou, and Hangchuan Zhang. 2023. "Research on an Improved Detection Algorithm Based on YOLOv5s for Power Line Self-Exploding Insulators" Electronics 12, no. 17: 3675. https://doi.org/10.3390/electronics12173675
APA StyleHu, C., Min, S., Liu, X., Zhou, X., & Zhang, H. (2023). Research on an Improved Detection Algorithm Based on YOLOv5s for Power Line Self-Exploding Insulators. Electronics, 12(17), 3675. https://doi.org/10.3390/electronics12173675