Multi-Task Learning and Gender-Aware Fashion Recommendation System Using Deep Learning
Abstract
:1. Introduction
- We propose a multi-task learning and gender-aware framework to improve the performance of the fashion recommendations systems to recommend the most relevant products and to reduce the time of retrieving relevant products.
- We propose a new similarity method that detects all the available objects in the query image, and based on gender-aware information, we retrieve the most relevant products for each detected object from the right database.
- Compared to the existing recommender systems, the MLGFRS enhances the robustness and the performance of the recommendations, which may suit clients with a more pretentious style.
2. Related Works
2.1. Fashion Recommender Systems
2.2. Gender-Aware Detection
2.3. Object Detection
2.4. Similarity Learning
3. Proposed System
Algorithm 1. Proposed System Algorithm |
Step 1: Qimg ← Pick Query image Step 2: Objects ← Detect Objects (Qimg) Step 3: Gender ← Detect Gender (Qimg) Step 4: IF Gender is male THEN DataSet ← MenDS ELSE: Dataset ← WomenDS Step 5: FOR each object in Objects DO FOR each item in object class DO Dissimilarity ← Euclidean Distance (object, item) Extract top five items with low dissimilarity |
3.1. Database and Classification
3.2. Gender Detection
3.3. Object Detection
Algorithm 2. Object Detection Training Pseudocode |
Step 1: Dataset ← Load_Dataset() Step 2: FOR each item in Dataset DO Darknet [] ← Create_coco_file() Step 3: model ← YOLO() Step 4: FOR five epochs DO Best_model ← model.train() Step 5: evaluate_model(Best_model) Step 6: test_model(Best_model) |
3.4. Similarities Learning
Algorithm 3. Train Siamese Network Pseudocode |
Step 1: Dataset ← Load Dataset Step 2: Resize images build Transform Tensor Step 3: Create Siamese Network Setting Up CNN Layers Setting Fully Connected Layers Determine Similarities Obtaining Vectors Step 4: Train Siamese Network for 2000 epochs. Step 5: evaluate Siamese Network Step 6: test Siamese Network |
4. Experiments Results and Evaluation
4.1. Dataset Classification
4.2. Gender Detection
4.3. Object Detection
4.4. Similarities Learning
5. Results
Algorithm 4. Proof of the algorithm time complexity |
Input: Qimg // Query Image Result ← Qimg × DS_items → N DS ← Men + Women. Gender ←½ DS. // while we have the gender detected. The result will be as following Result ← Qimg × DS/2 Result ← N/2. |
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jannach, D.; Pu, P.; Ricci, F.; Zanker, M. Recommender systems: Past, present, future. AI Mag. 2021, 42, 3–6. [Google Scholar]
- MacKenzie, I.; Meyer, C.; Noble, S. How Retailers Can Keep up with Consumers; McKinsey & Company: Brussels, Belgium, 2013; p. 18. [Google Scholar]
- Chhabra, S. Netflix Says 80 Percent of Watched Content Is Based on Algorithmic Recommendations; Mobile Syrup: Toronto, ON, USA, 2017. [Google Scholar]
- Chakraborty, S.; Hoque, M.S.; Rahman Jeem, N.; Biswas, M.C.; Bardhan, D.; Lobaton, E. Fashion recommendation systems, models and methods: A review. Informatics 2021, 8, 49. [Google Scholar] [CrossRef]
- Khalid, M.; Keming, M.; Hussain, T. Design and implementation of clothing fashion style recommendation system using deep learning. Rom. J. Inform. Technol. Autom. Control 2021, 31, 123–136. [Google Scholar] [CrossRef]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv 2016, arXiv:arXiv:160304467. [Google Scholar]
- Korea Federation of Textile Industries. Korea Fashion Market Trend 2019 Report; Korea Federation of Textile Industries: Seoul, Republic of Korea, 2019. [Google Scholar]
- Korea Fashion Association. Global Fashion Industry Survey; Korea Fashion Association: Seoul, Republic of Korea, 2019. [Google Scholar]
- Jo, J.; Lee, S.; Lee, C.; Lee, D.; Lim, H. Development of fashion product retrieval and recommendations model based on deep learning. Electronics 2020, 9, 508. [Google Scholar] [CrossRef] [Green Version]
- Bellini, P.; Palesi, L.A.I.; Nesi, P.; Pantaleo, G. Multi clustering recommendation system for fashion retail. Multimed. Tools Appl. 2023, 82, 9989–10016. [Google Scholar] [CrossRef] [PubMed]
- Nobile, T.H.; Noris, A.; Kalbaska, N.; Cantoni, L. A review of digital fashion research: Before and beyond communication and marketing. Int. J. Fash. Des. Technol. Educ. 2021, 14, 293–301. [Google Scholar] [CrossRef]
- Liao, L.; He, X.; Zhao, B.; Ngo, C.W.; Chua, T.S. Interpretable multimodal retrieval for fashion products. In Proceedings of the 26th ACM international conference on Multimedia, Seoul, Republic of Korea, 22–26 October 2018; pp. 1571–1579. [Google Scholar]
- Yang, X.; He, X.; Wang, X.; Ma, Y.; Feng, F.; Wang, M.; Chua, T.S. Interpretable fashion matching with rich attributes. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, France, 21–25 July 2019; pp. 775–784. [Google Scholar]
- Cheng, Z.; Liu, F.; Mei, S.; Guo, Y.; Zhu, L.; Nie, L. Feature-level attentive ICF for recommendation. ACM Trans. Inf. Syst. (TOIS) 2022, 40, 1–24. [Google Scholar] [CrossRef]
- Liu, F.; Cheng, Z.; Zhu, L.; Gao, Z.; Nie, L. Interest-aware message-passing gcn for recommendation. In Proceedings of the Web Conference, Ljubljana, Slovenia, 19–23 April 2021; pp. 1296–1305. [Google Scholar]
- Li, D.; Li, J.; Lin, Z. Online consumer-to-consumer market in China—A comparative study of Taobao and eBay. Electron. Commer. Res. Appl. 2008, 7, 55–67. [Google Scholar] [CrossRef]
- Shen, J. Analyzing on the Going Global Marketing Strategy–Taking Shein as an Example. In Proceedings of the 2022 International Conference on Creative Industry and Knowledge Economy (CIKE 2022), Hangzhou, China, 31 March–2 April 2023; Atlantis Press: Paris, France, 2023; pp. 225–229. [Google Scholar]
- Sharma, S.; Shakya, H.K.; Marriboyina, V. A location based novel recommender framework of user interest through data categorization. Mater. Today Proc. 2021, 47, 7155–7161. [Google Scholar] [CrossRef]
- Khan, K.; Attique, M.; Syed, I.; Gul, A. Automatic gender classification through face segmentation. Symmetry 2019, 11, 770. [Google Scholar] [CrossRef] [Green Version]
- Makinen, E.; Raisamo, R. Evaluation of gender classification methods with automatically detected and aligned faces. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Face++ Research Toolkit. Available online: http://www.faceplusplus.com (accessed on 1 February 2023).
- Chen, H.; Gallagher, A.; Girod, B. Describing clothing by semantic attributes. In Proceedings of the Computer Vision–ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, 7–13 October 2012; Part III 12. Springer: Berlin/Heidelberg, Germany, 2012; pp. 609–623. [Google Scholar]
- Cai, S.; Wang, J.; Quan, L. How fashion talks: Clothing-region-based gender recognition. In Proceedings of the Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications: 19th Iberoamerican Congress, CIARP 2014, Puerto Vallarta, Mexico, 2–5 November 2014; Proceedings 19. Springer: Berlin/Heidelberg, Germany, 2014; pp. 515–523. [Google Scholar]
- Rasheed, J.; Waziry, S.; Alsubai, S.; Abu-Mahfouz, A.M. An Intelligent Gender Classification System in the Era of Pandemic Chaos with Veiled Faces. Processes 2022, 10, 1427. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:arXiv:180402767. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Schroff, F.; Kalenichenko, D.; Philbin, J. Facenet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 815–823. [Google Scholar]
- Ge, Y.; Zhang, R.; Wang, X.; Tang, X.; Luo, P. Deepfashion2: A versatile benchmark for detection, pose estimation, segmentation and re-identification of clothing images. In Proceedings of the IEEE/CVF Conference On Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5337–5345. [Google Scholar]
- Navneet Sajwan Stpete_Ishii, Yuleqing. Men/Women Classification Dataset. 2018. Available online: https://www.kaggle.com/datasets/playlist/men-women-classification (accessed on 5 March 2022).
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. Int. Conf. Mach. Learn. 2019, PMLR, 6105–6114. [Google Scholar]
- Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023; pp. 7464–7475. [Google Scholar]
- Jocher, G., CA, & QJ. YOLO by Ultralytics (Version 8.0.0). 2023. Available online: https://github.com/ultralytics/ultralytics (accessed on 10 August 2022).
- Bromley, J.; Guyon, I.; LeCun, Y.; Säckinger, E.; Shah, R. Signature verification using a “siamese” time delay neural network. In Proceedings of the Advances in Neural Information Processing Systems, Denver, CO, USA, 30 November–3 December 1993; Volume 6. [Google Scholar]
- Chopra, S.; Hadsell, R.; LeCun, Y. Learning a similarity metric discriminatively, with application to face verification. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; pp. 539–546. [Google Scholar]
- Wang, J.; Zhou, F.; Wen, S.; Liu, X.; Lin, Y. Deep metric learning with angular loss. In Proceedings of the IEEE international Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2593–2601. [Google Scholar]
- Sun, Y.; Zheng, L.; Yang, Y.; Tian, Q.; Wang, S. Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline). In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 480–496. [Google Scholar]
- Zhou, K.; Yang, Y.; Cavallaro, A.; Xiang, T. Omni-scale feature learning for person re-identification. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3702–3712. [Google Scholar]
- Wang, F.; Cheng, J.; Liu, W.; Liu, H. Additive margin softmax for face verification. IEEE Signal Process. Lett. 2018, 25, 926–930. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:arXiv:14091556. [Google Scholar]
Fun | Formula |
---|---|
mAP | |
Precision | |
Recall | |
IoU |
Query Image | CLASS | S1 | S2 | S3 | S4 | S5 |
---|---|---|---|---|---|---|
vest dress | ||||||
Short Sleeve Top | ||||||
Shorts | ||||||
Short Sleeve | ||||||
Trousers |
Model | Accuracy |
---|---|
ResNet50 | 95% |
EfficientNetB7 | 99.443% |
Model | Accuracy | Loss |
---|---|---|
AlexNet | 79% | 51% |
VGG16 | 83 | 48% |
Fashion Rec. System [5] | 86% | 51% |
MLGFRS | 95.81% | 40% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naham, A.-Z.; Wang, J.; Raeed, A.-S. Multi-Task Learning and Gender-Aware Fashion Recommendation System Using Deep Learning. Electronics 2023, 12, 3396. https://doi.org/10.3390/electronics12163396
Naham A-Z, Wang J, Raeed A-S. Multi-Task Learning and Gender-Aware Fashion Recommendation System Using Deep Learning. Electronics. 2023; 12(16):3396. https://doi.org/10.3390/electronics12163396
Chicago/Turabian StyleNaham, Al-Zuhairi, Jiayang Wang, and Al-Sabri Raeed. 2023. "Multi-Task Learning and Gender-Aware Fashion Recommendation System Using Deep Learning" Electronics 12, no. 16: 3396. https://doi.org/10.3390/electronics12163396
APA StyleNaham, A.-Z., Wang, J., & Raeed, A.-S. (2023). Multi-Task Learning and Gender-Aware Fashion Recommendation System Using Deep Learning. Electronics, 12(16), 3396. https://doi.org/10.3390/electronics12163396