Supervised Dimensionality Reduction of Proportional Data Using Exponential Family Distributions
Abstract
:1. Introduction
- Proposing a novel supervised dimensionality reduction method that addresses the curse of dimensionality in high-dimensional sparse proportional data by projecting data into a low-dimensional space, mitigating sparsity significantly.
- Introducing a unique approach to handle multi-modal data by modeling the projected data using a mixture of exponential family distributions for each class, allowing for effective discrimination between multi-modal and single-modal classes.
- Formulating a closed form for the similarity between projected classes using KL-Divergence and employing a heuristic search algorithm to optimize the separation of classes, resulting in a robust and efficient solution to the problem of dimensionality reduction, outperforming other compared algorithms in diverse experimental settings.
2. Related Works
3. Proposed Method
3.1. Problem Statement
3.2. Class Distribution Estimation
3.3. Measuring Inter-Class Distance
3.4. Maximizing Class Distance
Algorithm 1 Summary of the proposed algorithm |
|
4. Experimental Results
4.1. Test Scenarios
4.2. Complexity Analysis
5. Conclusions
- Proposing a novel supervised DR method that addresses the sparsity of the data effectively and efficiently.
- Introducing a unique approach to handle multi-modal data by modeling the projected data using a mixture of exponential family distributions.
- Formulating a closed form of KL-Divergence between the mixtures as a measure of separability.
Author Contributions
Funding
Data Availability Statement
- 20-newsgroups: UCI Machine Learning Repository https://archive.ics.uci.edu/datasets (accessed on 24 June 2023).
- Caltech-256: Caltech Data by Caltech Library https://data.caltech.edu/records/nyy15-4j048 (accessed on 24 June 2023).
- Linnaeus-5: http://chaladze.com http://chaladze.com/l5/ (accessed on 24 June 2023).
- ImageNet: https://www.image-net.org https://www.image-net.org/ (accessed on 24 June 2023).
- Food101:ETH Zurich https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/ (accessed on 24 June 2023).
Conflicts of Interest
References
- Donoho, D.L. High-dimensional data analysis: The curses and blessings of dimensionality. AMS Math Chall. Lect. 2000, 1, 32. [Google Scholar]
- Pedagadi, S.; Orwell, J.; Velastin, S.; Boghossian, B. Local fisher discriminant analysis for pedestrian re-identification. In Proceedings of the 2013 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 23–28 June 2013; pp. 3318–3325. [Google Scholar]
- Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Comput. Electr. Eng. 2014, 40, 16–28. [Google Scholar] [CrossRef]
- Liu, K.; Fu, Y.; Wu, L.; Li, X.; Aggarwal, C.; Xiong, H. Automated Feature Selection: A Reinforcement Learning Perspective. IEEE Trans. Knowl. Data Eng. 2023, 35, 2272–2284. [Google Scholar] [CrossRef]
- Bruni, V.; Cardinali, M.L.; Vitulano, D. A Short Review on Minimum Description Length: An Application to Dimension Reduction in PCA. Entropy 2022, 24, 269. [Google Scholar] [CrossRef] [PubMed]
- Abdulhammed, R.; Musafer, H.; Alessa, A.; Faezipour, M.; Abuzneid, A. Features Dimensionality Reduction Approaches for Machine Learning Based Network Intrusion Detection. Electronics 2019, 8, 322. [Google Scholar] [CrossRef] [Green Version]
- Chao, G.; Luo, Y.; Ding, W. Recent Advances in Supervised Dimension Reduction: A Survey. Mach. Learn. Knowl. Extr. 2019, 1, 341–358. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, J.P.; Ghahramani, Z. Linear dimensionality reduction: Survey, insights, and generalizations. J. Mach. Learn. Res. 2015, 16, 2859–2900. [Google Scholar]
- Zhuo, L.; Cheng, B.; Zhang, J. A comparative study of dimensionality reduction methods for large-scale image retrieval. Neurocomputing 2014, 141, 202–210. [Google Scholar] [CrossRef]
- Lu, H.; Plataniotis, K.N.; Venetsanopoulos, A.N. A survey of multilinear subspace learning for tensor data. Pattern Recognit. 2011, 44, 1540–1551. [Google Scholar] [CrossRef]
- Jiang, X. Linear subspace learning-based dimensionality reduction. IEEE Signal Process. Mag. 2011, 28, 16–26. [Google Scholar] [CrossRef]
- Fisher, R.A. The use of multiple measurements in taxonomic problems. Ann. Eugen. 1936, 7, 179–188. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal Component Analysis. Encycl. Stat. Behav. Sci. 2002, 30, 487. [Google Scholar]
- Sugiyama, M. Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis. J. Mach. Learn. Res. 2007, 8, 1027–1061. [Google Scholar]
- Sugiyama, M.; Idé, T.; Nakajima, S.; Sese, J. Semi-supervised local Fisher discriminant analysis for dimensionality reduction. J. Mach. Learn. 2010, 78, 35–61. [Google Scholar] [CrossRef] [Green Version]
- Bartholomew, D.J. The foundations of factor analysis. Biometrika 1984, 71, 221–232. [Google Scholar] [CrossRef]
- He, X.; Niyogi, P. Locality preserving projections. Neural Inf. Process. Syst. 2004, 16, 153. [Google Scholar]
- Wang, H.; Lu, X.; Hu, Z.; Zheng, W. Fisher Discriminant Analysis With L1-Norm. IEEE Trans. Cybern. 2014, 44, 828–842. [Google Scholar] [CrossRef]
- Schölkopf, B.; Smola, A.; Müller, K.R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 1998, 10, 1299–1319. [Google Scholar] [CrossRef] [Green Version]
- Weinberger, K.; Saul, L. An introduction to nonlinear dimensionality reduction by maximum variance unfolding. In Proceedings of the 2006 Twenty First National Conference on Artificial Intelligence, Boston, MA, USA, 16–20 July 2006; pp. 1683–1686. [Google Scholar]
- McInnes, L.; Healy, J.; Melville, J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv 2020, arXiv:1802.03426. [Google Scholar]
- van der Maaten, L.; Hinton, G. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Roweis, S.T.; Saul, L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290, 2323–2326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, H.; Feng, D.; Yang, F. A Promising Nonlinear Dimensionality Reduction Method: Kernel-Based within Class Collaborative Preserving Discriminant Projection. IEEE Signal Process. Lett. 2020, 27, 2034–2038. [Google Scholar] [CrossRef]
- Bouguila, N.; Ziou, D. A dirichlet process mixture of generalized dirichlet distributions for proportional data modeling. IEEE Trans. Neural Netw. 2010, 21, 107–122. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Bouguila, N. Learning finite Beta-Liouville mixture models via variational Bayes for proportional data clustering. In Proceedings of the 2013 IJCAI International Joint Conference on Artificial Intelligence, Beijing, China, 3–9 August 2013; pp. 1323–1329. [Google Scholar]
- Epaillard, E.; Bouguila, N. Proportional data modeling with hidden Markov models based on generalized Dirichlet and Beta-Liouville mixtures applied to anomaly detection in public areas. Pattern Recognit. 2016, 55, 125–136. [Google Scholar] [CrossRef]
- Masoudimansour, W.; Bouguila, N. Dimensionality reduction of proportional data through data separation using dirichlet distribution. Image Anal. Recognit. 2015, 9164, 141–149. [Google Scholar]
- Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent Dirichlet allocation. Mach. Learn. Res. 2012, 3, 993–1022. [Google Scholar]
- Wang, H.Y.; Yang, Q.; Qin, H.; Zha, H. Dirichlet component analysis: Feature extraction for compositional data. In Proceedings of the 2008 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; pp. 1128–1135. [Google Scholar]
- Epaillard, E.; Bouguila, N. Hidden Markov models based on generalized dirichlet mixtures for proportional data modeling. Lect. Notes Comput. Sci. 2014, 8774, 71–82. [Google Scholar]
- Shen, Z.H.; Pan, Y.H.; Wang, S.T. A supervised locality preserving projection algorithm for dimensionality reduction. Pattern Recognit. Artif. Intell. 2008, 21, 233–239. [Google Scholar]
- Wong, W.K.; Zhao, H.T. Supervised optimal locality preserving projection. Pattern Recognit. 2012, 45, 186–197. [Google Scholar] [CrossRef]
- Cai, D.; He, X.; Zhou, K.; Han, J.; Bao, H. Locality sensitive discriminant analysis. In Proceedings of the 20th International Joint Conference on Artifical Intelligence, Hyderabad, India, 6–12 January 2007; pp. 708–713. [Google Scholar]
- Kullback, S. Information Theory and Statistics; Dover Publications: Mineola, NY, USA, 1997. [Google Scholar]
- Hershey, J.R.; Olsen, P.A. Approximating the Kullback-Leibler divergence between Gaussian mixture models. Acoust. Speech Signal Process. 2007, 4, 317–320. [Google Scholar]
- Kuhn, H.W.; Tucker, A.W. Nonlinear programming. In Second Berkeley Symposium on Mathematical Statistics and Probability; Springer: Basel, Switzerland, 1951; pp. 481–492. [Google Scholar]
- Aitchison, J. The Statistical Analysis of Compositional Data; Monographs on Statistics and Applied Probability; Chapman and Hall: Boca Raton, FL, USA, 1986. [Google Scholar]
- Chaladze, G.; Kalatozishvili, L. Linnaeus 5 Dataset for Machine Learning. 2017. Available online: http://chaladze.com/l5/ (accessed on 24 June 2023).
K | 3 | 4 | 5 | 6 |
---|---|---|---|---|
SLPP | 78.33 ± 0.11 | 78.27 ± 0.12 | 77.52 ± 0.10 | 77.85 ± 0.11 |
LSDA | 78.22 ± 0.10 | 77.47 ± 0.10 | 78.81 ± 0.11 | 77.96 ± 0.12 |
LDA-L1 | 82.62 ± 0.03 | 82.74 ± 0.04 | 80.81 ± 0.02 | 83.48 ± 0.01 |
EXPMMP | 94.15 ± 0.01 | 95.00 ± 0.01 | 94.89 ± 0.01 | 94.94 ± 0.01 |
Classes | SLPP | LSDA | LDA-L1 | EXPMMP |
---|---|---|---|---|
Greyhound vs. Galaxy | 92.60 ± 0.04 | 92.75 ± 0.04 | 90.90 ± 0.03 | 94.90 ± 0.02 |
Lightning vs. Hourglass | 81.02 ± 0.03 | 81.42 ± 0.03 | 72.38 ± 0.03 | 84.15 ± 0.02 |
Eyeglasses vs. Microscope | 81.00 ± 0.03 | 81.00 ± 0.03 | 77.50 ± 0.03 | 83.00 ± 0.02 |
Hrmonica vs. Laptop | 71.38 ± 0.03 | 71.51 ± 0.03 | 67.71 ± 0.02 | 76.03 ± 0.02 |
Necktie vs. Conch | 71.77 ± 0.05 | 71.75 ± 0.06 | 73.50 ± 0.05 | 78.07 ± 0.02 |
Gas pump vs. Yarmulke | 76.55 ± 0.06 | 76.13 ± 0.06 | 65.95 ± 0.04 | 83.30 ± 0.03 |
Kayak vs. Chandelier | 77.52 ± 0.03 | 77.35 ± 0.03 | 64.55 ± 0.04 | 78.95 ± 0.02 |
Unicorn vs. Lathe | 73.69 ± 0.03 | 73.91 ± 0.04 | 63.78 ± 0.03 | 75.26 ± 0.01 |
Motorbikes vs. Breadmaker | 91.70 ± 0.02 | 91.37 ± 0.02 | 89.04 ± 0.01 | 97.12 ± 0.01 |
Classes | SLPP | LSDA | LDA-L1 | EXPMMP |
---|---|---|---|---|
Berry vs. Bird | 76.18 ± 0.03 | 76.25 ± 0.03 | 68.06 ± 0.03 | 77.62 ± 0.02 |
Berry vs. Dog | 77.68 ± 0.05 | 77.37 ± 0.04 | 68.09 ± 0.04 | 78.50 ± 0.01 |
Berry vs. Flower | 68.90 ± 0.03 | 69.34 ± 0.04 | 62.34 ± 0.03 | 69.93 ± 0.02 |
Berry vs. Other | 79.96 ± 0.04 | 79.46 ± 0.04 | 70.96 ± 0.03 | 82.78 ± 0.02 |
Bird vs. Dog | 63.84 ± 0.03 | 64.09 ± 0.03 | 58.25 ± 0.03 | 67.56 ± 0.01 |
Bird vs. Flower | 71.37 ± 0.04 | 71.31 ± 0.04 | 62.34 ± 0.03 | 69.90 ± 0.01 |
Bird vs. Other | 67.06 ± 0.04 | 66.90 ± 0.04 | 59.43 ± 0.04 | 69.68 ± 0.03 |
Dog vs. Flower | 74.15 ± 0.03 | 74.28 ± 0.02 | 61.46 ± 0.03 | 75.12 ± 0.01 |
Dog vs. Other | 74.59 ± 0.03 | 75.00 ± 0.03 | 68.75 ± 0.03 | 77.75 ± 0.02 |
Flower vs. Other | 76.59 ± 0.03 | 76.65 ± 0.02 | 68.56 ± 0.02 | 79.03 ± 0.01 |
Classes | SLPP | LSDA | LDA-L1 | EXPMMP |
---|---|---|---|---|
Hockey vs. Crypt | 90.84 ± 0.02 | 91.58 ± 0.02 | 80.61 ± 0.04 | 93.85 ± 0.01 |
Electronics vs. Religion | 75.72 ± 0.02 | 75.66 ± 0.02 | 73.24 ± 0.03 | 90.19 ± 0.01 |
Politics vs. Hockey | 87.52 ± 0.01 | 87.63 ± 0.01 | 77.64 ± 0.04 | 92.88 ± 0.01 |
Christian vs. Religion | 66.19 ± 0.01 | 65.95 ± 0.01 | 67.79 ± 0.02 | 76.11 ± 0.01 |
Windows vs. Electronics | 74.46 ± 0.08 | 80.36 ± 0.02 | 65.20 ± 0.04 | 83.11 ± 0.01 |
Graphics vs. Guns | 86.32 ± 0.01 | 86.26 ± 0.01 | 76.74 ± 0.01 | 91.37 ± 0.01 |
Autos vs. Politics | 81.43 ± 0.01 | 81.54 ± 0.01 | 69.84 ± 0.04 | 87.56 ± 0.01 |
Atheism vs. Baseball | 85.63 ± 0.02 | 85.13 ± 0.01 | 71.88 ± 0.01 | 87.81 ± 0.01 |
Classes | SLPP | LSDA | LDA-L1 | EXPMMP |
---|---|---|---|---|
statue vs. azure | 65.03 ± 0.03 | 64.98 ± 0.02 | 60.67 ± 0.03 | 70.13 ± 0.02 |
outbuilding vs. high altar | 78.00 ± 0.02 | 77.54 ± 0.02 | 67.46 ± 0.03 | 81.68 ± 0.02 |
falcon vs. leash | 62.63 ± 0.02 | 63.71 ± 0.02 | 64.04 ± 0.02 | 72.52 ± 0.02 |
blue peafowl vs. horseman | 71.23 ± 0.02 | 71.48 ± 0.02 | 67.41 ± 0.01 | 77.18 ± 0.01 |
purl vs. odometer | 89.77 ± 0.02 | 89.72 ± 0.02 | 83.52 ± 0.03 | 93.50 ± 0.02 |
chickadee vs. pipe | 71.84 ± 0.02 | 72.14 ± 0.02 | 72.14 ± 0.02 | 77.27 ± 0.01 |
woodpecker vs. kitten | 73.37 ± 0.02 | 73.12 ± 0.03 | 68.02 ± 0.03 | 80.68 ± 0.02 |
watermelon vs. crocodile | 71.07 ± 0.01 | 71.32 ± 0.01 | 69.54 ± 0.02 | 80.30 ± 0.01 |
guinea pig vs. sea eagle | 72.69 ± 0.03 | 73.14 ± 0.02 | 66.68 ± 0.02 | 74.19 ± 0.02 |
caiman vs. parrotfish | 67.21 ± 0.02 | 66.70 ± 0.03 | 70.35 ± 0.02 | 79.13 ± 0.02 |
fig vs. wild carrot | 85.41 ± 0.02 | 85.14 ± 0.02 | 81.62 ± 0.03 | 91.43 ± 0.01 |
Classes | SLPP | LSDA | LDA-L1 | EXPMMP |
---|---|---|---|---|
carrot cake vs. poutine | 76.75 ± 0.02 | 76.65 ± 0.02 | 71.40 ± 0.03 | 84.15 ± 0.02 |
miso soup vs. pad thai | 89.95 ± 0.02 | 90.25 ± 0.02 | 85.10 ± 0.02 | 94.45 ± 0.02 |
panna cotta vs. ramen | 75.30 ± 0.02 | 74.05 ± 0.02 | 69.65 ± 0.04 | 79.90 ± 0.01 |
cheesecake vs. tacos | 76.40 ± 0.02 | 76.30 ± 0.02 | 74.55 ± 0.02 | 82.50 ± 0.02 |
ice cream vs. tuna tartare | 65.25 ± 0.03 | 64.65 ± 0.03 | 62.55 ± 0.03 | 74.20 ± 0.03 |
fried rice vs. waffles | 81.85 ± 0.02 | 81.30 ± 0.02 | 78.10 ± 0.02 | 87.85 ± 0.02 |
caesar salad vs. oysters | 74.85 ± 0.03 | 74.95 ± 0.03 | 70.50 ± 0.01 | 83.40 ± 0.01 |
hot and sour soup vs. sushi | 83.35 ± 0.02 | 83.15 ± 0.02 | 78.95 ± 0.02 | 91.20 ± 0.01 |
Classes | SLPP | LSDA | LDA-L1 | EXPMMP |
---|---|---|---|---|
french onion soup + garlic bread vs. strawberry shortcake | 77.16 ± 0.02 | 76.60 ± 0.02 | 67.80 ± 0.02 | 79.83 ± 0.02 |
breakfast burrito + cheesecake vs. miso soup | 83.63 ± 0.02 | 83.33 ± 0.02 | 75.53 ± 0.01 | 86.13 ± 0.01 |
french toast + greek salad vs. seaweed salad | 82.56 ± 0.01 | 82.30 ± 0.01 | 73.26 ± 0.02 | 84.80 ± 0.01 |
breakfast burrito + hummus vs. ramen | 75.76 ± 0.03 | 75.63 ± 0.03 | 68.40 ± 0.02 | 78.46 ± 0.02 |
baklava + fish and chips vs. strawberry shortcake | 72.46 ± 0.02 | 71.90 ± 0.02 | 67.36 ± 0.02 | 74.23 ± 0.02 |
cheese plate + pancakes vs. spring rolls | 73.40 ± 0.02 | 73.50 ± 0.02 | 68.26 ± 0.02 | 77.90 ± 0.02 |
chicken curry + crab cakes vs. foie gras | 70.26 ± 0.02 | 70.80 ± 0.02 | 69.26 ± 0.01 | 76.02 ± 0.01 |
beef tartare + french toast vs. spaghetti bolognese | 82.60 ± 0.02 | 82.73 ± 0.01 | 73.93 ± 0.01 | 85.20 ± 0.01 |
beef tartare + cup cakes vs. lobster bisque | 84.43 ± 0.02 | 84.43 ± 0.02 | 78.13 ± 0.01 | 87.26 ± 0.01 |
donuts + gyoza vs. pho | 86.43 ± 0.01 | 85.96 ± 0.01 | 76.56 ± 0.01 | 88.10 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masoudimansour, W.; Bouguila, N. Supervised Dimensionality Reduction of Proportional Data Using Exponential Family Distributions. Electronics 2023, 12, 3355. https://doi.org/10.3390/electronics12153355
Masoudimansour W, Bouguila N. Supervised Dimensionality Reduction of Proportional Data Using Exponential Family Distributions. Electronics. 2023; 12(15):3355. https://doi.org/10.3390/electronics12153355
Chicago/Turabian StyleMasoudimansour, Walid, and Nizar Bouguila. 2023. "Supervised Dimensionality Reduction of Proportional Data Using Exponential Family Distributions" Electronics 12, no. 15: 3355. https://doi.org/10.3390/electronics12153355
APA StyleMasoudimansour, W., & Bouguila, N. (2023). Supervised Dimensionality Reduction of Proportional Data Using Exponential Family Distributions. Electronics, 12(15), 3355. https://doi.org/10.3390/electronics12153355