Powder Bed Approach to 3D Printing of Structural Electronic Circuits
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Influence of the Samples Printing Orientation on Electrical Resistance
3.2. Influence of the Printed Conductive Layers Number on Resistance
3.3. Influence of the Sintering Time on Resistance and Samples Physical Parameters
3.4. Influence of the Multiple Printing and Sintering on Resistance
3.5. Strength Tests of the Samples with the Resistance Measurement of the Paths
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Słoma, M. 3D Printed Electronics with Nanomaterials. Nanoscale 2023, 15, 5623–5648. [Google Scholar] [CrossRef] [PubMed]
- Dembek, K.; Podsiadły, B.; Słoma, M. Influence of Process Parameters on the Resistivity of 3D Printed Electrically Conductive Structures. Micromachines 2022, 13, 1203. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.K.; Sin, K.S.; Shin, C.; Kim, J.H.; Hwang, K.T.; Kim, U.S.; Nahm, S.; Han, K.S. Fabrication of 3D Structure with Heterogeneous Compositions Using Inkjet Printing Process. Mater. Today Commun. 2023, 35, 105753. [Google Scholar] [CrossRef]
- Nie, X.; Wang, H.; Zou, J. Inkjet Printing of Silver Citrate Conductive Ink on PET Substrate. Appl. Surf. Sci. 2012, 261, 554–560. [Google Scholar] [CrossRef]
- Podsiadły, B.; Matuszewski, P.; Skalski, A.; Słoma, M. Carbon Nanotube-Based Composite Filaments for 3d Printing of Structural and Conductive Elements. Appl. Sci. 2021, 11, 1272. [Google Scholar] [CrossRef]
- Dorigato, A.; Moretti, V.; Dul, S.; Unterberger, S.H.; Pegoretti, A. Electrically Conductive Nanocomposites for Fused Deposition Modelling. Synth. Met. 2017, 226, 7–14. [Google Scholar] [CrossRef]
- Podsiadły, B.; Skalski, A.; Wałpuski, B.; Słoma, M. Heterophase Materials for Fused Filament Fabrication of Structural Electronics. J. Mater. Sci. Mater. Electron. 2019, 30, 1236–1245. [Google Scholar] [CrossRef]
- Podsiadły, B.; Bezgan, L.; Słoma, M. 3D Printed Electronic Circuits from Fusible Alloys. Electronics 2022, 11, 3829. [Google Scholar] [CrossRef]
- Zhang, P.; Yu, Y.; Chen, B.; Wang, W.; Wei, S.; Rao, W.; Wang, Q. Fast Fabrication of Double-Layer Printed Circuits Using Bismuth-Based Low-Melting Alloy Beads. J. Mater. Chem. C Mater. 2020, 8, 8028–8035. [Google Scholar] [CrossRef]
- Wałpuski, B.; Słoma, M. Additive Manufacturing of Electronics from Silver Nanopowders Sintered on 3D Printed Low-Temperature Substrates. Adv. Eng. Mater. 2021, 23, 2001085. [Google Scholar] [CrossRef]
- Blake, A.J.; Kohlmeyer, R.R.; Hardin, J.O.; Carmona, E.A.; Maruyama, B.; Berrigan, J.D.; Huang, H.; Durstock, M.F. 3D Printable Ceramic–Polymer Electrolytes for Flexible High-Performance Li-Ion Batteries with Enhanced Thermal Stability. Adv. Energy Mater. 2017, 7, 1602920. [Google Scholar] [CrossRef]
- Rocha, V.G.; García-Tuñón, E.; Botas, C.; Markoulidis, F.; Feilden, E.; D’Elia, E.; Ni, N.; Shaffer, M.; Saiz, E. Multimaterial 3D Printing of Graphene-Based Electrodes for Electrochemical Energy Storage Using Thermoresponsive Inks. ACS Appl. Mater. Interfaces 2017, 9, 37136–37145. [Google Scholar] [CrossRef] [PubMed]
- Shen, K.; Ding, J.; Yang, S. 3D Printing Quasi-Solid-State Asymmetric Micro-Supercapacitors with Ultrahigh Areal Energy Density. Adv. Energy Mater. 2018, 8, 1800408. [Google Scholar] [CrossRef]
- Saleh, M.S.; Hu, C.; Panat, R. Three-Dimensional Microarchitected Materials and Devices Using Nanoparticle Assembly by Pointwise Spatial Printing. Sci. Adv. 2017, 3, e1601986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, C.S.; Lu, X.; Renn, M.; Stroder, M.; Shih, W.S. Aerosol-Jet-Printed, High-Speed, Flexible Thin-Film Transistor Made Using Single-Walled Carbon Nanotube Solution. Microelectron. Eng. 2010, 87, 434–437. [Google Scholar] [CrossRef]
- Kelly, A.G.; O’Reilly, J.; Gabbett, C.; Szydłowska, B.; O’Suilleabhain, D.; Khan, U.; Maughan, J.; Carey, T.; Sheil, S.; Stamenov, P.; et al. Highly Conductive Networks of Silver Nanosheets. Small 2022, 18, 2105996. [Google Scholar] [CrossRef]
- Schuppert, A.; Thielen, M.; Reinhold, I.; Schmidt, W.A.; Schoeller, F. Ink Jet Printing of Conductive Silver Tracks from Nanoparticle Inks on Mesoporous Substrates. In Proceedings of the 27th International Conference on Digital Printing Technologies, NIP27 and 7th International Conference on Digital Fabrication 2011, Minneapolis, MN, USA, 2–6 October 2011. [Google Scholar]
- Nogi, M.; Koga, H.; Suganuma, K. Highly Conductive Ink-Jet-Printed Lines. In Organic Electronics Materials and Devices; Springer: Tokyo, Japan, 2015; pp. 117–137. ISBN 9784431556541. [Google Scholar]
- Wang, S.; Liu, N.; Tao, J.; Yang, C.; Liu, W.; Shi, Y.; Wang, Y.; Su, J.; Li, L.; Gao, Y. Inkjet Printing of Conductive Patterns and Supercapacitors Using a Multi-Walled Carbon Nanotube/Ag Nanoparticle Based Ink. J. Mater. Chem. A Mater. 2015, 3, 2407–2413. [Google Scholar] [CrossRef]
- Chen, S.-P.; Chiu, H.-L.; Wang, P.-H.; Liao, Y.-C. Inkjet Printed Conductive Tracks for Printed Electronics. ECS J. Solid State Sci. Technol. 2015, 4, P3026–P3033. [Google Scholar] [CrossRef]
- Uzun, S.; Schelling, M.; Hantanasirisakul, K.; Mathis, T.S.; Askeland, R.; Dion, G.; Gogotsi, Y. Additive-Free Aqueous MXene Inks for Thermal Inkjet Printing on Textiles. Small 2021, 17, 2006376. [Google Scholar] [CrossRef]
- Hussain, A.; Abbas, N.; Ali, A. Inkjet Printing: A Viable Technology for Biosensor Fabrication. Chemosensors 2022, 10, 103. [Google Scholar] [CrossRef]
- Huang, G.L.; Zhou, S.G.; Chio, T.H.; Yeo, T.S. Fabrication of a High-Efficiency Waveguide Antenna Array via Direct Metal Laser Sintering. IEEE Antennas Wirel. Propag. Lett. 2015, 15, 622–625. [Google Scholar] [CrossRef]
- Zhou, Z.; Wu, X.F. Graphene-Beaded Carbon Nanofibers for Use in Supercapacitor Electrodes: Synthesis and Electrochemical Characterization. J. Power Sources 2013, 222, 410–416. [Google Scholar] [CrossRef]
- Bai, Y.; Williams, C.B. An Exploration of Binder Jetting of Copper. Rapid Prototyp. J. 2015, 21, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Williams, C.B. Binder Jetting Additive Manufacturing with a Particle-Free Metal Ink as a Binder Precursor. Mater. Des. 2018, 147, 146–156. [Google Scholar] [CrossRef]
- Bai, Y.; Williams, C.B. The Effect of Inkjetted Nanoparticles on Metal Part Properties in Binder Jetting Additive Manufacturing. Nanotechnology 2018, 29, 395706. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Chu, M.; Hariri, F.; Vedula, G.; Naguib, H.E. Binder Jetting Fabrication of Highly Flexible and Electrically Conductive Graphene/PVOH Composites. Addit. Manuf. 2020, 36, 101565. [Google Scholar] [CrossRef]
- Azhari, A.; Marzbanrad, E.; Yilman, D.; Toyserkani, E.; Pope, M.A. Binder-Jet Powder-Bed Additive Manufacturing (3D Printing) of Thick Graphene-Based Electrodes. Carbon 2017, 119, 257–266. [Google Scholar] [CrossRef]
- Hoerber, J.; Glasschroeder, J.; Pfeffer, M.; Schilp, J.; Zaeh, M.; Franke, J. Approaches for Additive Manufacturing of 3D Electronic Applications. In Proceedings of the Procedia CIRP; Elsevier B.V.: Amsterdam, The Netherlands, 2014; Volume 17, pp. 806–811. [Google Scholar]
- ZPrinter® 450 Hardware Manual. Available online: https://www.manualslib.com/manual/1216183/Zcorporation-Zprinter-450.html (accessed on 29 May 2023).
- Technical Data Sheet PRELECT TPS303. Available online: www.agfa.com/conductivematerials (accessed on 29 May 2023).
- Shakor, P.; Nejadi, S.; Paul, G.; Sanjayan, J. A Novel Methodology of Powder-Based Cementitious Materials in 3D Inkjet Printing for Construction Applications. In Proceedings of the Sixth International Conference on Durability of Concrete Structures (ICDCS 2018), Leeds, UK, 18–20 July 2018. [Google Scholar]
- Bidoki, S.M.; Lewis, D.M.; Clark, M.; Vakorov, A.; Millner, P.A.; McGorman, D. Ink-Jet Fabrication of Electronic Components. J. Micromech. Microeng. 2007, 17, 967–974. [Google Scholar] [CrossRef]
- Niittynen, J.; Abbel, R.; Mäntysalo, M.; Perelaer, J.; Schubert, U.S.; Lupo, D. Alternative Sintering Methods Compared to Conventional Thermal Sintering for Inkjet Printed Silver Nanoparticle Ink. Thin Solid Films 2014, 556, 452–459. [Google Scholar] [CrossRef]
- Halonen, E.; Viiru, T.; Östman, K.; Cabezas, A.L.; Mantysalo, M. Oven Sintering Process Optimization for Inkjet-Printed Ag Nanoparticle Ink. IEEE Trans. Compon. Packag. Manuf. Technol. 2013, 3, 350–356. [Google Scholar] [CrossRef]
- Kang, J.S.; Kim, H.S.; Ryu, J.; Thomas Hahn, H.; Jang, S.; Joung, J.W. Inkjet Printed Electronics Using Copper Nanoparticle Ink. J. Mater. Sci. Mater. Electron. 2010, 21, 1213–1220. [Google Scholar] [CrossRef] [Green Version]
Sample Series Symbol | Measured Resistance [Ω] |
---|---|
0f | 40.42 ± 2.20 |
45f | 70.64 ± 21.08 |
90f | x |
0h | x |
Number of Sintering Processes While Preparation | Total Sintering Time [min] | Resistance [Ω] |
---|---|---|
1 | 30 | 34.01 ± 0.99 |
2 | 60 | 2.90 ± 0.27 |
3 | 90 | 1.89 ± 0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dembowski, D.; Słoma, M. Powder Bed Approach to 3D Printing of Structural Electronic Circuits. Electronics 2023, 12, 3088. https://doi.org/10.3390/electronics12143088
Dembowski D, Słoma M. Powder Bed Approach to 3D Printing of Structural Electronic Circuits. Electronics. 2023; 12(14):3088. https://doi.org/10.3390/electronics12143088
Chicago/Turabian StyleDembowski, Dawid, and Marcin Słoma. 2023. "Powder Bed Approach to 3D Printing of Structural Electronic Circuits" Electronics 12, no. 14: 3088. https://doi.org/10.3390/electronics12143088
APA StyleDembowski, D., & Słoma, M. (2023). Powder Bed Approach to 3D Printing of Structural Electronic Circuits. Electronics, 12(14), 3088. https://doi.org/10.3390/electronics12143088