Effect of the Particle Size Distribution of Irregular Al Powder on Properties of Parts for Electronics Fabricated by Binder Jetting
Abstract
:1. Introduction
2. Materials and Experimental Procedure
2.1. Materials
2.2. Parts’ Fabrication
2.3. Characterization Methods
3. Results and Discussion
3.1. Powder Particle Size Distribution
3.2. Specific Surface Area
3.3. Visual Characterization
3.4. X-ray Diffraction
3.5. Relative Density
3.6. Dimensional Changes
3.7. Porosity
3.8. Surface Roughness
4. Discussion on the Prospects of Using Binder Jetting Technology for the Production of Components for Electronic Applications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Calignano, F.; Mercurio, V. An Overview of the Impact of Additive Manufacturing on Supply Chain, Reshoring, and Sustainability. Clean. Logist. Supply Chain 2023, 7, 100103. [Google Scholar] [CrossRef]
- Cabezas, L.; Berger, C.; Jiménez-Piqué, E.; Pötschke, J.; Llanes, L. Testing Length-Scale Considerations in Mechanical Characterization of WC-Co Hardmetal Produced via Binder Jetting 3D Printing. Int. J. Refract. Met. Hard Mater. 2023, 111, 106099. [Google Scholar] [CrossRef]
- Rodríguez-González, P.; Zapico, P.; Robles-Valero, P.E.; Barreiro, J. Novel Post-Processing Procedure to Enhance Casting Molds Manufactured by Binder Jetting AM. Addit. Manuf. 2022, 59, 103142. [Google Scholar] [CrossRef]
- Korniejenko, K.; Łach, M.; Chou, S.Y.; Lin, W.T.; Mikuła, J.; Mierzwiński, D.; Cheng, A.; Hebda, M. A Comparative Study of Mechanical Properties of Fly Ash-Based Geopolymer Made by Casted and 3D Printing Methods. IOP Conf. Ser. Mater. Sci. Eng. 2019, 660, 012005. [Google Scholar] [CrossRef] [Green Version]
- Kumari, G.; Pham, T.Q.; Suen, H.; Rahman, T.; Kwon, P.; Foster, S.N.; Boehlert, C.J. Improving the Soft Magnetic Properties of Binder Jet Printed Iron-Silicon Alloy through Boron Addition. Mater. Chem. Phys. 2023, 296, 127181. [Google Scholar] [CrossRef]
- Mostafaei, A.; Elliott, A.M.; Barnes, J.E.; Li, F.; Tan, W.; Cramer, C.L.; Nandwana, P.; Chmielus, M. Binder Jet 3D Printing—Process Parameters, Materials, Properties, Modeling, and Challenges. Prog. Mater. Sci. 2021, 119, 100707. [Google Scholar] [CrossRef]
- Mirzababaei, S.; Paul, B.K.; Pasebani, S. Microstructure-Property Relationship in Binder Jet Produced and Vacuum Sintered 316 L. Addit. Manuf. 2022, 53, 102720. [Google Scholar] [CrossRef]
- Peng, Y.; Unluer, C. Development of Alternative Cementitious Binders for 3D Printing Applications: A Critical Review of Progress, Advantages and Challenges. Compos. Part B Eng. 2023, 252, 110492. [Google Scholar] [CrossRef]
- Marczyk, J.; Ziejewska, C.; Gądek, S.; Korniejenko, K.; Łach, M.; Góra, M.; Kurek, I.; Doğan-Sağlamtimur, N.; Hebda, M.; Szechyńska-Hebda, M. Hybrid Materials Based on Fly Ash, Metakaolin, and Cement for 3D Printing. Materials 2021, 14, 6874. [Google Scholar] [CrossRef]
- Nyamekye, P.; Rahimpour Golroudbary, S.; Piili, H.; Luukka, P.; Kraslawski, A. Impact of Additive Manufacturing on Titanium Supply Chain: Case of Titanium Alloys in Automotive and Aerospace Industries. Adv. Ind. Manuf. Eng. 2023, 6, 100112. [Google Scholar] [CrossRef]
- Massard, Q.; Munoz, J.; Raffestin, M.; Urville, C.; Faverjon, P. Innovative Additive Manufacturing Cutting Tool Design Methodology for Automotive Large Boring Operations Such as E-Motor Housing. Procedia CIRP 2022, 108, 19–24. [Google Scholar] [CrossRef]
- Madhavadas, V.; Srivastava, D.; Chadha, U.; Aravind Raj, S.; Sultan, M.T.H.; Shahar, F.S.; Shah, A.U.M. A Review on Metal Additive Manufacturing for Intricately Shaped Aerospace Components. CIRP J. Manuf. Sci. Technol. 2022, 39, 18–36. [Google Scholar] [CrossRef]
- Pierre, J.; Iervolino, F.; Farahani, R.D.; Piccirelli, N.; Lévesque, M.; Therriault, D. Material Extrusion Additive Manufacturing of Multifunctional Sandwich Panels with Load-Bearing and Acoustic Capabilities for Aerospace Applications. Addit. Manuf. 2023, 61, 103344. [Google Scholar] [CrossRef]
- Marczyk, J.; Ziejewska, C.; Pławecka, K.; Bąk, A.; Łach, M.; Korniejenko, K.; Hager, I.; Mikuła, J.; Lin, W.-T.; Hebda, M. Optimizing the L/S Ratio in Geopolymers for the Production of Large-Size Elements with 3D Printing Technology. Materials. 2022, 15, 3362. [Google Scholar] [CrossRef] [PubMed]
- Marczyk, J.; Ziejewska, C.; Korniejenko, K.; Łach, M.; Marzec, W.; Góra, M.; Dziura, P.; Sprince, A.; Szechyńska-Hebda, M.; Hebda, M. Properties of 3D Printed Concrete–Geopolymer Hybrids Reinforced with Aramid Roving. Materials. 2022, 15, 6132. [Google Scholar] [CrossRef] [PubMed]
- Haleem, A.; Javaid, M. 3D Printed Medical Parts with Different Materials Using Additive Manufacturing. Clin. Epidemiol. Glob. Health 2020, 8, 215–223. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Pisignano, D.; Zhao, Y.; Xue, J. Advances in Medical Applications of Additive Manufacturing. Engineering 2020, 6, 1222–1231. [Google Scholar] [CrossRef]
- Oliveira, S.M.; Martins, A.J.; Fuciños, P.; Cerqueira, M.A.; Pastrana, L.M. Food Additive Manufacturing with Lipid-Based Inks: Evaluation of Phytosterol-Lecithin Oleogels. J. Food Eng. 2023, 341, 111317. [Google Scholar] [CrossRef]
- Negi, S.; Nambolan, A.A.; Kapil, S.; Joshi, P.S.; Manivannan, R.; Karunakaran, K.P.; Bhargava, P. Review on Electron Beam Based Additive Manufacturing. Rapid Prototyp. J. 2020, 26, 485–498. [Google Scholar] [CrossRef]
- Chowdhury, S.; Yadaiah, N.; Prakash, C.; Ramakrishna, S.; Dixit, S.; Gupta, L.R.; Buddhi, D. Laser Powder Bed Fusion: A State-of-the-Art Review of the Technology, Materials, Properties & Defects, and Numerical Modelling. J. Mater. Res. Technol. 2022, 20, 2109–2172. [Google Scholar] [CrossRef]
- Ziaee, M.; Crane, N.B. Binder Jetting: A Review of Process, Materials, and Methods. Addit. Manuf. 2019, 28, 781–801. [Google Scholar] [CrossRef]
- Cai, J.; Zhang, B.; Qu, X. Microstructure Evolution and Mechanical Behavior of SS316L Alloy Fabricated by a Non-Toxic and Low Residue Binder Jetting Process. Appl. Surf. Sci. 2023, 616, 156589. [Google Scholar] [CrossRef]
- Cook, O.J.; Huang, N.; Smithson, R.L.W.; Kube, C.M.; Beese, A.M.; Argüelles, A.P. Uncovering Microstructural Heterogeneities in Binder Jet Printed SS316L through Ultrasonic Testing and X-Ray Computed Tomography. Mater. Charact. 2023, 197, 112697. [Google Scholar] [CrossRef]
- Lv, X.; Ye, F.; Cheng, L.; Fan, S.; Liu, Y. Binder Jetting of Ceramics: Powders, Binders, Printing Parameters, Equipment, and Post-Treatment. Ceram. Int. 2019, 45, 12609–12624. [Google Scholar] [CrossRef]
- Bafaluy Ojea, S.; Torrents-Barrena, J.; Pérez-Prado, M.T.; Muñoz Moreno, R.; Sket, F. Binder Jet Green Parts Microstructure: Advanced Quantitative Analysis. J. Mater. Res. Technol. 2023, 23, 3974–3986. [Google Scholar] [CrossRef]
- Armstrong, M.; Mehrabi, H.; Naveed, N. An Overview of Modern Metal Additive Manufacturing Technology. J. Manuf. Process. 2022, 84, 1001–1029. [Google Scholar] [CrossRef]
- ASTM F2792-12a; Standard Terminology for Additive Manufacturing Technologies. ASTM International: West Conshohocken, PA, USA, 2013.
- Mao, Y.; Cai, C.; Zhang, J.; Heng, Y.; Feng, K.; Cai, D.; Wei, Q. Effect of Sintering Temperature on Binder Jetting Additively Manufactured Stainless Steel 316L: Densification, Microstructure Evolution and Mechanical Properties. J. Mater. Res. Technol. 2023, 22, 2720–2735. [Google Scholar] [CrossRef]
- Rahman, K.M.; Wei, A.; Miyanaji, H.; Williams, C.B. Impact of Binder on Part Densification: Enhancing Binder Jetting Part Properties through the Fabrication of Shelled Geometries. Addit. Manuf. 2023, 62, 103377. [Google Scholar] [CrossRef]
- Chen, Q.; Juste, E.; Lasgorceix, M.; Petit, F.; Leriche, A. Binder Jetting Process with Ceramic Powders: Influence of Powder Properties and Printing Parameters. Open Ceram. 2022, 9, 100218. [Google Scholar] [CrossRef]
- Deng, H.; Huang, Y.; Wu, S.; Yang, Y. Binder Jetting Additive Manufacturing: Three-Dimensional Simulation of Micro-Meter Droplet Impact and Penetration into Powder Bed. J. Manuf. Process. 2022, 74, 365–373. [Google Scholar] [CrossRef]
- Wang, Y.; Genina, N.; Müllertz, A.; Rantanen, J. Coating of Primary Powder Particles Improves the Quality of Binder Jetting 3D Printed Oral Solid Products. J. Pharm. Sci. 2023, 112, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Ravel, R.; Pucci, M.F.; Divin, S.; Verquin, B.; Reynaud, C.; Bruchon, J.; Liotier, P.J. Combining Experiments and Modelling to Predict the Competition between Liquid Spreading and Impregnation in Porous Media for Metal Binder Jetting Applications. Colloids Surfaces A Physicochem. Eng. Asp. 2023, 666, 131347. [Google Scholar] [CrossRef]
- Huang, N.; Cook, O.J.; Warner, J.D.; Smithson, R.L.W.; Kube, C.M.; Argüelles, A.P.; Beese, A.M. Effects of Infiltration Conditions on Binder Jet Additively Manufactured Stainless Steel Infiltrated with Bronze. Addit. Manuf. 2022, 59, 103162. [Google Scholar] [CrossRef]
- Pasang, T.; Budiman, A.S.; Wang, J.C.; Jiang, C.P.; Boyer, R.; Williams, J.; Misiolek, W.Z. Additive Manufacturing of Titanium Alloys—Enabling Re-Manufacturing of Aerospace and Biomedical Components. Microelectron. Eng. 2023, 270, 111935. [Google Scholar] [CrossRef]
- Vaezi, M.; Chua, C.K. Effects of Layer Thickness and Binder Saturation Level Parameters on 3D Printing Process. Int. J. Adv. Manuf. Technol. 2011, 53, 275–284. [Google Scholar] [CrossRef]
- Lee, G.; Carrillo, M.; McKittrick, J.; Martin, D.G.; Olevsky, E.A. Fabrication of Ceramic Bone Scaffolds by Solvent Jetting 3D Printing and Sintering: Towards Load-Bearing Applications. Addit. Manuf. 2020, 33, 101107. [Google Scholar] [CrossRef]
- Rodríguez-González, P.; Fernández-Abia, A.I.; Castro-Sastre, M.A.; Barreiro, J. Heat Treatments for Improved Quality Binder Jetted Molds for Casting Aluminum Alloys. Addit. Manuf. 2020, 36, 101524. [Google Scholar] [CrossRef]
- Gaytan, S.M.; Cadena, M.A.; Karim, H.; Delfin, D.; Lin, Y.; Espalin, D.; MacDonald, E.; Wicker, R.B. Fabrication of Barium Titanate by Binder Jetting Additive Manufacturing Technology. Ceram. Int. 2015, 41, 6610–6619. [Google Scholar] [CrossRef] [Green Version]
- Rojas-Nastrucci, E.A.; Nussbaum, J.T.; Crane, N.B.; Weller, T.M. Ka-Band Characterization of Binder Jetting for 3-D Printing of Metallic Rectangular Waveguide Circuits and Antennas. IEEE Trans. Microw. Theory Tech. 2017, 65, 3099–3108. [Google Scholar] [CrossRef]
- Li, M.; Miao, G.; Du, W.; Pei, Z.; Ma, C. Difference between Powder Bed Density and Green Density for a Free-Flowing Powder in Binder Jetting Additive Manufacturing. J. Manuf. Process. 2022, 84, 448–456. [Google Scholar] [CrossRef]
- Miao, G.; Moghadasi, M.; Du, W.; Pei, Z.; Ma, C. Experimental Investigation on the Effect of Roller Traverse and Rotation Speeds on Ceramic Binder Jetting Additive Manufacturing. J. Manuf. Process. 2022, 79, 887–894. [Google Scholar] [CrossRef]
- Gonzalez, J.A.; Mireles, J.; Stafford, S.W.; Perez, M.A.; Terrazas, C.A.; Wicker, R.B. Characterization of Inconel 625 Fabricated Using Powder-Bed-Based Additive Manufacturing Technologies. J. Mater. Process. Technol. 2019, 264, 200–210. [Google Scholar] [CrossRef]
- Kwiatkowski, M.; Marczyk, J.; Putyra, P.; Kwiatkowski, M.; Przybyła, S.; Hebda, M. Influence of Alumina Grade on Sintering Properties and Possible Application in Binder Jetting Additive Technology. Materials 2023, 16, 3853. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, Z.; Wu, D.; Bai, J. Current Status and Prospects of Polymer Powder 3D Printing Technologies. Materials 2020, 13, 2406. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Lennon, A.; Buchanan, F.; McCarthy, H.O.; Dunne, N. Binder Jetting Additive Manufacturing of Hydroxyapatite Powders: Effects of Adhesives on Geometrical Accuracy and Green Compressive Strength. Addit. Manuf. 2020, 36, 101645. [Google Scholar] [CrossRef]
- Cramer, C.L.; Elliott, A.M.; Kiggans, J.O.; Haberl, B.; Anderson, D.C. Processing of Complex-Shaped Collimators Made via Binder Jet Additive Manufacturing of B4C and Pressureless Melt Infiltration of Al. Mater. Des. 2019, 180, 107956. [Google Scholar] [CrossRef]
- Marczyk, J.; Ostrowska, K.; Hebda, M. Influence of Binder Jet 3D Printing Process Parameters from Irregular Feedstock Powder on Final Properties of Al Parts. Adv. Powder Technol. 2022, 33, 103768. [Google Scholar] [CrossRef]
- Wu, L.; Yu, Z.; Liu, C.; Ma, Y.; Huang, Y.; Wang, T.; Yang, L.; Yan, H.; Liu, W. Microstructure and Tensile Properties of Aluminum Powder Metallurgy Alloy Prepared by a Novel Low-Pressure Sintering. J. Mater. Res. Technol. 2021, 14, 1419–1429. [Google Scholar] [CrossRef]
- Samal, P.; Vundavilli, P.R.; Meher, A.; Mahapatra, M.M. Recent Progress in Aluminum Metal Matrix Composites: A Review on Processing, Mechanical and Wear Properties. J. Manuf. Process. 2020, 59, 131–152. [Google Scholar] [CrossRef]
- Xu, X.; Feng, Y.; Yang, P.; Zhang, B.; Wang, Y.; Wang, Q.; Fan, X.; Ding, H. The Influence of Trace Elements on the Microstructures and Properties of the Aluminum Conductors. Results Phys. 2018, 11, 1058–1063. [Google Scholar] [CrossRef]
- Liu, S.; Zhu, X.; Long, J. Sintering Mechanism of Electronic Aluminum Paste and Its Effect on Electrical Conductivity of Aluminum Electrode. Mater. Sci. Semicond. Process. 2022, 139, 106352. [Google Scholar] [CrossRef]
- Dini, F.; Ghaffari, S.A.; Jafar, J.; Hamidreza, R.; Marjan, S. A Review of Binder Jet Process Parameters; Powder, Binder, Printing and Sintering Condition. Met. Powder Rep. 2020, 75, 95–100. [Google Scholar] [CrossRef]
- Miyanaji, H.; Rahman, K.M.; Da, M.; Williams, C.B. Effect of Fine Powder Particles on Quality of Binder Jetting Parts. Addit. Manuf. 2020, 36, 101587. [Google Scholar] [CrossRef]
- Du, W.; Singh, M.; Singh, D. Binder Jetting Additive Manufacturing of Silicon Carbide Ceramics: Development of Bimodal Powder Feedstocks by Modeling and Experimental Methods. Ceram. Int. 2020, 46, 19701–19707. [Google Scholar] [CrossRef]
- Bai, Y.; Wagner, G.; Williams, C.B. Effect of Particle Size Distribution on Powder Packing and Sintering in Binder Jetting Additive Manufacturing of Metals. J. Manuf. Sci. Eng. Trans. ASME 2017, 139, 081019. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Wagner, G.; Williams, C.B. Effect of Bimodal Powder Mixture on Powder Packing Density and Sintered Density in Binder Jetting of Metals. In Proceedings of the 2015 International Solid Freeform Fabrication Symposium, Austin, TX, USA, 10–12 August 2015; The University of Texas at Austin: Austin, Texas, USA, 2020; pp. 758–771. [Google Scholar]
- Du, W.; Roa, J.; Hong, J.; Liu, Y.; Pei, Z.; Ma, C. Binder Jetting Additive Manufacturing: Effect of Particle Size Distribution on Density. J. Manuf. Sci. Eng. Trans. ASME 2021, 143, 091002. [Google Scholar] [CrossRef]
- Yegyan Kumar, A.; Wang, J.; Bai, Y.; Huxtable, S.T.; Williams, C.B. Impacts of Process-Induced Porosity on Material Properties of Copper Made by Binder Jetting Additive Manufacturing. Mater. Des. 2019, 182, 108001. [Google Scholar] [CrossRef]
- Yegyan Kumar, A.; Bai, Y.; Eklund, A.; Williams, C.B. The Effects of Hot Isostatic Pressing on Parts Fabricated by Binder Jetting Additive Manufacturing. Addit. Manuf. 2018, 24, 115–124. [Google Scholar] [CrossRef]
- Li, M.; Huang, J.; Fang, A.; Mansoor, B.; Pei, Z.; Ma, C. Binder Jetting Additive Manufacturing of Copper/Diamond Composites: An Experimental Study. J. Manuf. Process. 2021, 70, 205–213. [Google Scholar] [CrossRef]
- Du, W.; Ren, X.; Pei, Z.; Ma, C. Ceramic Binder Jetting Additive Manufacturing: A Literature Review on Density. J. Manuf. Sci. Eng. Trans. ASME 2020, 142, 040801. [Google Scholar] [CrossRef]
- Gilmer, D.; Han, L.; Hong, E.; Siddel, D.; Kisliuk, A.; Cheng, S.; Brunermer, D.; Elliott, A.; Saito, T. An In-Situ Crosslinking Binder for Binder Jet Additive Manufacturing. Addit. Manuf. 2020, 35, 101341. [Google Scholar] [CrossRef]
- Mariani, M.; Beltrami, R.; Brusa, P.; Galassi, C.; Ardito, R.; Lecis, N. 3D Printing of Fine Alumina Powders by Binder Jetting. J. Eur. Ceram. Soc. 2021, 41, 5307–5315. [Google Scholar] [CrossRef]
- Huang, S.; Ye, C.; Zhao, H.; Fan, Z. Additive Manufacturing of Thin Alumina Ceramic Cores Using Binder-Jetting. Addit. Manuf. 2019, 29, 100802. [Google Scholar] [CrossRef]
- Koutiri, I.; Pessard, E.; Peyre, P.; Amlou, O.; De Terris, T. Influence of SLM Process Parameters on the Surface Finish, Porosity Rate and Fatigue Behavior of as-Built Inconel 625 Parts. J. Mater. Process. Technol. 2018, 255, 536–546. [Google Scholar] [CrossRef]
- Thompson, A.; Senin, N.; Giusca, C.; Leach, R. Topography of Selectively Laser Melted Surfaces: A Comparison of Different Measurement Methods. CIRP Ann.—Manuf. Technol. 2017, 66, 543–546. [Google Scholar] [CrossRef]
- Zhu, Z.; Lou, S.; Majewski, C. Characterisation and Correlation of Areal Surface Texture with Processing Parameters and Porosity of High Speed Sintered Parts. Addit. Manuf. 2020, 36, 101402. [Google Scholar] [CrossRef]
- Merola, M.; Ruggiero, A.; De Mattia, J.S.; Affatato, S. On the Tribological Behavior of Retrieved Hip Femoral Heads Affected by Metallic Debris. A Comparative Investigation by Stylus and Optical Profilometer for a New Roughness Measurement Protocol. Meas. J. Int. Meas. Confed. 2016, 90, 365–371. [Google Scholar] [CrossRef]
- ISO 4287—Geometrical Product Specification (GPS)—Surface Texture: Profile Method—Terms, Definitions and Surface Texture Parameters. Available online: https://landingpage.bsigroup.com/LandingPage/Standard?UPI=000000000030167230 (accessed on 15 July 2000).
- Whip, B.; Sheridan, L.; Gockel, J. The Effect of Primary Processing Parameters on Surface Roughness in Laser Powder Bed Additive Manufacturing. Int. J. Adv. Manuf. Technol. 2019, 103, 4411–4422. [Google Scholar] [CrossRef]
- Franco, L.A.; Sinatora, A. 3D Surface Parameters (ISO 25178-2): Actual Meaning of Spk and Its Relationship to Vmp. Precis. Eng. 2015, 40, 106–111. [Google Scholar] [CrossRef]
- Kumar, A.; Bai, Y.; Eklund, A.; Williams, C.B. Effects of Hot Isostatic Pressing on Copper Parts Fabricated via Binder Jetting. Procedia Manuf. 2017, 10, 935–944. [Google Scholar] [CrossRef]
- Moghadasi, M.; Du, W.; Li, M.; Pei, Z.; Ma, C. Ceramic Binder Jetting Additive Manufacturing: Effects of Particle Size on Feedstock Powder and Final Part Properties. Ceram. Int. 2020, 46, 16966–16972. [Google Scholar] [CrossRef]
- Muttakin, M.; Mitra, S.; Thu, K.; Ito, K.; Saha, B.B. Theoretical Framework to Evaluate Minimum Desorption Temperature for IUPAC Classified Adsorption Isotherms. Int. J. Heat Mass Transf. 2018, 122, 795–805. [Google Scholar] [CrossRef]
- Wypych, G. 3.2.3—Metal Powders—Aluminum Powder. In Databook of Antistatics; ChemTec Publishing: Toronto, ON, Canada, 2014; pp. 288–298. ISBN 978-1-895198-61-4. [Google Scholar]
- Gao, X.; Wang, C.; Bai, W.; Hou, Y.; Che, D. Experimental Investigation of the Catalyst-Free Reaction Characteristics of Micron Aluminum Powder with Water at Low and Medium Temperatures. J. Energy Storage 2023, 59, 106543. [Google Scholar] [CrossRef]
- Gonzalez, J.A.; Mireles, J.; Lin, Y.; Wicker, R.B. Characterization of Ceramic Components Fabricated Using Binder Jetting Additive Manufacturing Technology. Ceram. Int. 2016, 42, 10559–10564. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Vedrtnam, A. Experimental and Numerical Study on Effect of Constrained Groove Pressing on Mechanical Behaviour and Morphology of Aluminium and Copper. J. Manuf. Process. 2021, 67, 478–486. [Google Scholar] [CrossRef]
- Solis, D.M.; Silva, A.V.; Volpato, N.; Berti, L.F. Reaction-Bonding of Aluminum Oxide Processed by Binder Jetting. J. Manuf. Process. 2019, 41, 267–272. [Google Scholar] [CrossRef]
- Shin, C.S.; Do, T.; Lee, D.; So, T.Y.; Ko, S.H.; Chung, H.; Kwon, P. A Comparative Study on Mechanical Properties of Fully Dense 420 Stainless Steel Parts Produced by Modified Binder Jet Printing. Mater. Des. 2022, 224, 111343. [Google Scholar] [CrossRef]
- Jamalkhani, M.; Asherloo, M.; Gurlekce, O.; Ho, I.-T.; Heim, M.; Nelson, D.; Mostafaei, A. Deciphering Microstructure-Defect-Property Relationships of Vacuum-Sintered Binder Jetted Fine 316 L Austenitic Stainless Steel Powder. Addit. Manuf. 2022, 59, 103133. [Google Scholar] [CrossRef]
- Mostafaei, A.; Rodriguez De Vecchis, P.; Nettleship, I.; Chmielus, M. Effect of Powder Size Distribution on Densification and Microstructural Evolution of Binder-Jet 3D-Printed Alloy 625. Mater. Des. 2019, 162, 375–383. [Google Scholar] [CrossRef]
- Sadeghi Borujeni, S.; Shad, A.; Abburi Venkata, K.; Günther, N.; Ploshikhin, V. Numerical Simulation of Shrinkage and Deformation during Sintering in Metal Binder Jetting with Experimental Validation. Mater. Des. 2022, 216, 110490. [Google Scholar] [CrossRef]
- Yang, M.; Keshavarz, M.K.; Vlasea, M.; Molavi-Kakhki, A.; Laher, M. Supersolidus Liquid Phase Sintering of Water-Atomized Low-Alloy Steel in Binder Jetting Additive Manufacturing. Heliyon 2023, 9, e13882. [Google Scholar] [CrossRef] [PubMed]
- Mirzababaei, S.; Pasebani, S. A Review on Binder Jet Additive Manufacturing of 316L Stainless Steel. J. Manuf. Mater. Process. 2019, 3, 8–12. [Google Scholar] [CrossRef] [Green Version]
- Colton, T.; Inkley, C.; Berry, A.; Crane, N.B. Impact of Inkjet Printing Parameters and Environmental Conditions on Formation of 2D and 3D Binder Jetting Geometries. J. Manuf. Process. 2021, 71, 187–196. [Google Scholar] [CrossRef]
- Dahmen, T.; Klingaa, C.G.; Baier-Stegmaier, S.; Lapina, A.; Pedersen, D.B.; Hattel, J.H. Characterization of Channels Made by Laser Powder Bed Fusion and Binder Jetting Using X-ray CT and Image Analysis. Addit. Manuf. 2020, 36, 101445. [Google Scholar] [CrossRef]
Powder | Elemental Composition (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Al | Fe | K | W | Cr | Zn | Cu | Ba | V | Ga | |
ALC100 | 99.65 | 0.20 | 0.04 | 0.04 | 0.02 | 0.02 | 0.02 | – | 0.01 | – |
AL160 | 99.68 | 0.14 | 0.04 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 |
Designation | Powder Fraction Share (wt.%) | ||
---|---|---|---|
100 | 73 | 27 | |
ALC100 | ALC100 | ||
ALC100:AL160 | ALC100 | AL160 | |
50 µm:20 µm | 50 µm | 20 µm | |
70 µm:20 µm | 70 µm | 20 µm | |
AL160:ALC100 | AL160 | ALC100 | |
AL160 | AL160 |
Designation | Fraction Share in the Blend (wt.%) | D10 (µm) | D50 (µm) | D90 (µm) | Mean Size (µm) | Span |
---|---|---|---|---|---|---|
Aluminum powder fractions after sieving | ||||||
20 µm | − | 8.41 ± 0.13 | 14.48 ± 0.02 | 21.01 ± 0.06 | 15.20 ± 0.01 | 0.87 ± 0.01 |
50 µm | − | 20.56 ± 0.73 | 34.16 ± 2.08 | 48.31 ± 2.73 | 35.98 ± 1.99 | 0.81 ± 0.01 |
70 µm | − | 32.14 ± 0.95 | 48.96 ± 1.28 | 68.70 ± 2.43 | 51.48 ± 1.60 | 0.75 ± 0.02 |
Aluminum powder blends | ||||||
ALC100 | 100 | 7.98 ± 0.06 | 20.39 ± 0.23 | 34.61 ± 0.74 | 21.93 ± 0.32 | 1.31 ± 0.02 |
ALC100:AL160 | 73:27 | 9.66 ± 0.17 | 21.03 ± 0.70 | 31.03 ± 0.41 | 22.00 ± 0.54 | 1.02 ± 0.02 |
50 µm:20 µm | 73:27 | 15.55 ± 0.06 | 26.17 ± 1.03 | 37.35 ± 1.75 | 27.77 ± 1.07 | 0.83 ± 0.03 |
70 µm:20 µm | 73:27 | 19.00 ± 0.80 | 27.32 ± 1.99 | 37.81 ± 3.28 | 29.23 ± 2.10 | 0.69 ± 0.04 |
AL160:ALC100 | 73:27 | 12.93 ± 0.21 | 30.48 ± 0.96 | 47.19 ± 1.09 | 32.06 ± 0.80 | 1.12 ± 0.01 |
AL160 | 100 | 23.09 ± 0.82 | 51.38 ± 2.15 | 87.37 ± 4.97 | 56.10 ± 2.69 | 1.25 ± 0.03 |
Powder Designation | BET Specific Surface Area (m2/g) |
---|---|
ALC100 | 0.545 |
ALC100:AL160 * | 0.531 |
50 µm:20 µm * | 0.508 |
70 µm:20 µm * | 0.473 |
AL160:ALC100 * | 0.436 |
AL160 | 0.405 |
Designation | Circularity | Perimeter (µm) | Feret Horizontal Diameter (µm) | Feret Vertical Diameter (µm) | Porosity (%) |
---|---|---|---|---|---|
ALC100 | 2.08 ± 0.03 | 3.50 ± 0.10 | 0.82 ± 0.03 | 0.80 ± 0.03 | 47.81 ± 0.36 |
ALC100:AL160 | 2.08 ± 0.03 | 3.76 ± 0.23 | 0.85 ± 0.02 | 0.82 ± 0.02 | 45.95 ± 0.16 |
50 µm:20 µm | 2.02 ± 0.02 | 3.93 ± 0.40 | 0.85 ± 0.02 | 0.82 ± 0.03 | 48.14 ± 0.43 |
70 µm:20 µm | 2.04 ± 0.05 | 3.67 ± 0.08 | 0.88 ± 0.02 | 0.84 ± 0.01 | 46.48 ± 0.21 |
AL160:ALC100 | 2.03 ± 0.06 | 3.49 ± 0.17 | 0.87 ± 0.03 | 0.83 ± 0.03 | 50.99 ± 0.21 |
AL160 | 1.99 ± 0.05 | 3.56 ± 0.18 | 0.86 ± 0.02 | 0.83 ± 0.03 | 56.45 ± 0.29 |
Designation | Top Surface | Side Surface | ||
---|---|---|---|---|
Skewness (Ssk) | Kurtosis (Sku) | Skewness (Ssk) | Kurtosis (Sku) | |
ALC100 | 0.33 ± 0.07 | 3.60 ± 0.09 | 0.20 ± 0.01 | 4.23 ± 0.54 |
ALC100:AL160 | 0.81 ± 0.08 | 4.96 ± 0.18 | 0.54 ± 0.13 | 4.25 ± 0.45 |
50 µm:20 µm | 0.24 ± 0.12 | 3.53 ± 0.13 | 0.15 ± 0.01 | 3.29 ± 0.22 |
70 µm:20 µm | 0.32 ± 0.12 | 4.11 ± 0.25 | 0.27 ± 0.07 | 3.56 ± 0.25 |
AL160:ALC100 | 0.22 ± 0.07 | 4.06 ± 0.37 | 0.52 ± 0.08 | 5.00 ± 0.45 |
AL160 | 0.37 ± 0.20 | 3.71 ± 0.31 | 0.64 ± 0.13 | 5.74 ± 0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marczyk, J.; Hebda, M. Effect of the Particle Size Distribution of Irregular Al Powder on Properties of Parts for Electronics Fabricated by Binder Jetting. Electronics 2023, 12, 2733. https://doi.org/10.3390/electronics12122733
Marczyk J, Hebda M. Effect of the Particle Size Distribution of Irregular Al Powder on Properties of Parts for Electronics Fabricated by Binder Jetting. Electronics. 2023; 12(12):2733. https://doi.org/10.3390/electronics12122733
Chicago/Turabian StyleMarczyk, Joanna, and Marek Hebda. 2023. "Effect of the Particle Size Distribution of Irregular Al Powder on Properties of Parts for Electronics Fabricated by Binder Jetting" Electronics 12, no. 12: 2733. https://doi.org/10.3390/electronics12122733
APA StyleMarczyk, J., & Hebda, M. (2023). Effect of the Particle Size Distribution of Irregular Al Powder on Properties of Parts for Electronics Fabricated by Binder Jetting. Electronics, 12(12), 2733. https://doi.org/10.3390/electronics12122733