# Novel DQ-Based Multicarrier PWM Strategy for a Single-Phase F-Type Inverter

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. F-Type Inverter Modeling

## 3. Proposed Method

- a-
- Clarke Transformation: The single-phase current or voltage is converted into two orthogonal components, typically referred to as the alpha and beta components.
- b-
- Park Transformation: The alpha and beta components obtained from the Clarke transformation are transformed into the DQ reference frame. The Park transformation involves rotating the alpha-beta frame by an angle equal to the desired reference frame angle.

## 4. Simulation Results Discussion

_{pv}< P

_{load}) is covered in Section 4.2, while the third scenario addressing P

_{pv}> P

_{load}is explained in Section 4.3. Section 4.4 delves into the discussion of the impact of sudden load changes, and Section 4.5 explores the effect of changes in the power output of the PV array. Finally, in Section 4.6, a comparison is made between the performances of F-type and T-type inverters using the proposed control scheme.

#### 4.1. System Simulation When PV Array Is Idle

#### 4.2. System Simulation When PV Power = Load Power

#### 4.3. System Simulation When PV Power Is More Than the Load Real Power

#### 4.4. System Simulation for Sudden Load Change Case

#### 4.5. PV Array Power Change Effect

#### 4.6. Comparative Study

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Çelik, D. Lyapunov based harmonic compensation and charging with three phase shunt active power filter in electrical vehicle applications. Int. J. Electr. Power Energy Syst.
**2022**, 136, 107564. [Google Scholar] [CrossRef] - Barreto-Parra, G.F.; Cortés-Caicedo, B.; Montoya, O.D. Optimal Integration of D-STATCOMs in Radial and Meshed Distribution Networks Using a MATLAB-GAMS Interface. Algorithms
**2023**, 16, 138. [Google Scholar] [CrossRef] - Abdullah, R.D.; Khalaf, A.A.; Drobic, G. Power Components Compensation by Utilizing Pv Converter Functions. Des. Eng.
**2021**, 7, 4913–4925. [Google Scholar] - Kalla, U.K.; Kaushik, H.; Singh, B.; Kumar, S. Adaptive Control of Voltage Source Converter Based Scheme for Power Quality Improved Grid-Interactive Solar PV–Battery System. IEEE Trans. Ind. Appl.
**2019**, 56, 787–799. [Google Scholar] [CrossRef] - Ji, Y.; Yuan, Z.; Zhao, J.; Wang, Y.; Zhao, Y. Overall control scheme for VSC-based medium-voltage DC power distribution networks. IET Gener. Transm. Distrib.
**2018**, 12, 1438–1445. [Google Scholar] [CrossRef] - Omer, P.; Kumar, J.; Surjan, B.S. A Review on Reduced Switch Count Multilevel Inverter Topologies. IEEE Access
**2020**, 8, 22281–22302. [Google Scholar] [CrossRef] - Bana, P.R.; Panda, K.P.; Naayagi, R.T.; Siano, P.; Panda, G. Recently developed reduced switch multilevel inverter for renewable energy integration and drives application: Topologies, comprehensive analysis and comparative evaluation. IEEE Access
**2019**, 7, 54888–54909. [Google Scholar] [CrossRef] - Vijeh, M.; Rezanejad, M.; Samadaei, E.; Bertilsson, K. A General Review of Multilevel Inverters Based on Main Submodules: Structural Point of View. IEEE Trans. Power Electron.
**2019**, 34, 9479–9502. [Google Scholar] [CrossRef] - Odeh, C.I.; Lewicki, A.; Morawiec, M.; Kondratenko, D. Three-Level F-Type Inverter. IEEE Trans. Power Electron.
**2021**, 36, 11265–11275. [Google Scholar] [CrossRef] - Sefa, I.; Ozdemir, S.; Komurcugil, H.; Altin, N. Comparative study on Lyapunov-function-based control schemes for single-phase grid-connected voltage-source inverter with LCL filter. IET Renew. Power Gener.
**2017**, 11, 1473–1482. [Google Scholar] [CrossRef] - Shadoul, M.; Yousef, H.; Abri, R.; Al-Hinai, A. Adaptive Fuzzy Approximation Control of PV Grid-Connected Inverters. Energies
**2021**, 14, 942. [Google Scholar] [CrossRef] - Qi, Y.; Deng, H.; Liu, X.; Tang, Y. Synthetic Inertia Control of Grid-connected Inverter Considering the Synchronization Dynamics. IEEE Trans. Power Electron.
**2021**, 37, 1411–1421. [Google Scholar] [CrossRef] - Azab, M. A finite control set model predictive control scheme for single-phase grid-connected inverters. Renew. Sustain. Energy Rev.
**2021**, 135, 110131. [Google Scholar] [CrossRef] - Shieh, J.-J.; Hwu, K.-I.; Li, Y.-Y. A Single-Voltage-Source Class-D Boost Multi-Level Inverter with Self-Balanced Capacitors. Energies
**2022**, 15, 4082. [Google Scholar] [CrossRef] - Srinivasan, G.K.; Rivera, M.; Loganathan, V.; Ravikumar, D.; Mohan, B. Trends and Challenges in Multi-Level Inverter with Reduced Switches. Electronics
**2021**, 10, 368. [Google Scholar] [CrossRef] - Deffaf, B.; Debdouche, N.; Benbouhenni, H.; Hamoudi, F.; Bizon, N. A New Control for Improving the Power Quality Generated by a Three-Level T-Type Inverter. Electronics
**2023**, 12, 2117. [Google Scholar] [CrossRef] - Gu, X.; Xu, W.; Zhang, G.; Chen, W.; Jin, X. Three-Level Inverter-PMSM Model Predictive Current Control Based on the Extended Control Set. Electronics
**2023**, 12, 557. [Google Scholar] [CrossRef] - Kumar, A.; Verma, V. Performance enhancement of single-phase grid-connected PV system under partial shading using cascaded multilevel converter. IEEE Trans. Ind. Appl.
**2018**, 54, 2665–2676. [Google Scholar] [CrossRef] - Cecati, C.; Ciancetta, F.; Siano, P. A Multilevel Inverter for Photovoltaic Systems with Fuzzy Logic Control. IEEE Trans. Ind. Electron.
**2010**, 57, 4115–4125. [Google Scholar] [CrossRef] - Shuvo, S.; Hossain, E.; Islam, T.; Akib, A.; Padmanaban, S.; Khan, M.Z.R. Design and hardware implementation considerations of modified multilevel cascaded H-bridge inverter for photovoltaic system. IEEE Access
**2019**, 7, 16504–16524. [Google Scholar] [CrossRef] - Naghavi, F.; Toliyat, H. Grid-connected Soft Switching Partial Resonance Inverter for Distributed Generation. In Proceedings of the 2022 IEEE 31st International Symposium on Industrial Electronics (ISIE), Anchorage, Alaska, 1–3 June 2022; pp. 927–932. [Google Scholar]
- Bayhan, S.; Komurcugil, H. Sliding-mode control strategy for three-phase three-level T-type rectifiers with DC capacitor voltage balancing. IEEE Access
**2020**, 8, 64555–64564. [Google Scholar] [CrossRef] - Alepuz, S.; Busquets-Monge, S.; Nicolás-Apruzzese, J.; Filbà-Martínez, À.; Bordonau, J.; Yuan, X.; Kouro, S. A Survey on Capacitor Voltage Control in Neutral-Point-Clamped Multilevel Converters. Electronics
**2022**, 11, 527. [Google Scholar] [CrossRef] - Marchesoni, M.; Tenca, P. Diode-clamped multilevel converters: A practicable way to balance DC-link voltages. IEEE Trans. Ind. Electron.
**2002**, 49, 752–765. [Google Scholar] [CrossRef] - Michalec, M.; Jasiński, M.; Sikorski, T.; Leonowicz, Z.; Jasiński, Ł.; Suresh, V. Impact of Harmonic Currents of Nonlinear Loads on Power Quality of a Low Voltage Network–Review and Case Study. Energies
**2021**, 14, 3665. [Google Scholar] [CrossRef] - Stanelyte, D.; Radziukynas, V. Review of Voltage and Reactive Power Control Algorithms in Electrical Distribution Networks. Energies
**2020**, 13, 58. [Google Scholar] [CrossRef] [Green Version] - Sharma, R.; Singh, A.; Jha, A.N. Performance evaluation of tuned PI controller for power quality enhancement for linear and non linear loads. In Proceedings of the International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014), Jaipur, India, 9–11 May 2014; pp. 1–6. [Google Scholar]
- Woyte, A.; Van Thong, V.; Belmans, R.; Nijs, J. Voltage fluctuations on distribution level introduced by photovoltaic systems. IEEE Trans. Energy Convers.
**2006**, 21, 202–209. [Google Scholar] [CrossRef] - Faiz, J.; Shahgholian, G. Modeling and simulation of a three-phase inverter with rectifier-type nonlinear loads. Armen. J. Phys.
**2009**, 2, 307–316. [Google Scholar] - Kadnekar, V. Permanent Magnet Synchronous Motor Drive System Utilizing DQ Transformation. Ph.D. Thesis, California State University, Northridge, CA, USA, 2018. [Google Scholar]
- Monfared, M.; Sanatkar, M.; Golestan, S. Direct active and reactive power control of single-phase grid-tie converters. IET Power Electron.
**2012**, 5, 1544–1550. [Google Scholar] [CrossRef] [Green Version] - Chattopadhyay, S.; Mitra, M.; Sengupta, S. Clarke and park transform. In Electric Power Quality; Springer: Dordrecht, The Netherlands, 2011; pp. 89–96. [Google Scholar]

**Figure 4.**Reference and carrier waveforms (each color represents carrier waveform, while the red colored curve represents the reference signal).

**Table 1.**The switching cases and related output voltages. (*: letters represent switching cases in Figure 2).

Switching State * | S_{1a} | S_{2a} | S_{3a} | S_{4a} | S_{1b} | S_{2b} | S_{3b} | S_{4b} | V_{ab} |
---|---|---|---|---|---|---|---|---|---|

1 (g) | ON | OFF | ON | OFF | ON | OFF | ON | OFF | 0 |

2 (a) | ON | OFF | ON | OFF | OFF | ON | ON | OFF | ${V}_{C1}$$=(\frac{{V}_{dc}}{2}$) |

3 (b) | OFF | ON | ON | OFF | OFF | ON | OFF | ON | ${V}_{C2}$$=(\frac{{V}_{dc}}{2}$) |

4 (c) | ON | OFF | ON | OFF | OFF | ON | OFF | ON | V_{dc} |

5 (i) | OFF | ON | ON | OFF | OFF | ON | ON | OFF | 0 |

6 (d) | OFF | ON | ON | OFF | ON | OFF | ON | OFF | $-{V}_{C2}$$=(\frac{-{V}_{dc}}{2}$) |

7 (e) | OFF | ON | OFF | ON | OFF | ON | ON | OFF | $-{V}_{C2}$$=(\frac{-{V}_{dc}}{2}$) |

8 (f) | OFF | ON | OFF | ON | ON | OFF | ON | OFF | −V_{dc} |

9 (h) | OFF | ON | OFF | ON | OFF | ON | OFF | ON | 0 |

I PV (A) | 0 | 6 | 14.75 |
---|---|---|---|

I grid (F-type) (A) | 6.98 | 1.32 | 7.145 |

I grid (T-type) (A) | 7.43 | 1.64 | 6.87 |

THD (F-type) (%) | 0.73 | 3.58 | 0.62 |

THD (T-type) (%) | 0.57 | 2.45 | 0.54 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Abdullah, R.; Smida, M.B.; Thamallah, A.; Khalaf, A.; Sakly, A.
Novel DQ-Based Multicarrier PWM Strategy for a Single-Phase F-Type Inverter. *Electronics* **2023**, *12*, 2972.
https://doi.org/10.3390/electronics12132972

**AMA Style**

Abdullah R, Smida MB, Thamallah A, Khalaf A, Sakly A.
Novel DQ-Based Multicarrier PWM Strategy for a Single-Phase F-Type Inverter. *Electronics*. 2023; 12(13):2972.
https://doi.org/10.3390/electronics12132972

**Chicago/Turabian Style**

Abdullah, Raad, Mouna Ben Smida, Ali Thamallah, Aouse Khalaf, and Anis Sakly.
2023. "Novel DQ-Based Multicarrier PWM Strategy for a Single-Phase F-Type Inverter" *Electronics* 12, no. 13: 2972.
https://doi.org/10.3390/electronics12132972