Adaptive Dendritic Cell-Negative Selection Method for Earthquake Prediction
Abstract
:1. Introduction
- A NSA model with the ability of adaptive learning is proposed, and it can adapt to changes in the environment and context.
- DCA detects data drifts in the context of trigger-adaptation strategies, namely, the gradient descent is used to optimize the radius parameter of NSA.
- The proposed DC-NSA is implemented to the historical seismic events in Sichuan and the surrounding areas.
2. Related Works
3. The Proposed DC-NSA Earthquake Prediction Approach
3.1. Seismic Indicators
3.2. Negative Selection Algorithm
Algorithm 1 NSA |
Input: self S Output: classification matrix 1: Initialize the number of detectors , self radius , detectors set D, and maximum distance 2: while the number of detectors < do 3: Generates n-dimensional vectors d randomly 4: for each antigen s in training set S do 5: Calculate the Euclidean distance between the random detector d and the self 6: if then 7: 8: end if 9: end for 10: if then 11: 12: Add the vector to the mature detector set D 13: end if 14: end while |
3.3. Dendritic Cell Algorithm-Based NSA
Algorithm 2 DCA |
|
4. Experimentation
4.1. The Dataset and Performance Measurement
4.2. The Prototype Implementation
4.3. Verification Indicators
4.4. Results Analysis and Comparison
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuntai, C. Earthquake prediction: Retrospect and prospect. Sci. China Ser. Earth Sci. 2009, 39, 1633–1658. [Google Scholar]
- Panakkat, A.; Adeli, H. Recurrent neural network for approximate earthquake time and location prediction using multiple seismicity indicators. Comput.-Aided Civ. Infrastruct. Eng. 2009, 24, 280–292. [Google Scholar] [CrossRef]
- Forrest, S.; Perelson, A.S.; Allen, L.; Cherukuri, R. Self-Nonself Discrimination in a Computer; IEEE: Piscataway, NJ, USA, 1994. [Google Scholar]
- Fernández-Gómez, M.J.; Asencio-Cortés, G.; Troncoso, A.; Martínez-Álvarez, F. Large earthquake magnitude prediction in chile with imbalanced classifiers and ensemble learning. Appl. Sci. 2017, 7, 625. [Google Scholar] [CrossRef] [Green Version]
- Beroza, G.C.; Segou, M.; Mousavi, S.M. Machine learning and earthquake forecasting next steps. Nat. Commun. 2021, 7, 4761. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.; Nayyar, A.; Arora, S.; Gupta, A. A comprehensive analysis and prediction of earthquake magnitude based on position and depth parameters using machine and deep learning models. Multimed. Tools Appl. 2021, 80, 28419–28438. [Google Scholar] [CrossRef]
- Dehbozorgi, L.; Farokhi, F. Effective feature selection for short-term earthquake prediction using neuro-fuzzy classifier. In Proceedings of the Second IITA International Conference on Geoscience and Remote Sensing, Qingdao, China, 28–31 August 2010. [Google Scholar]
- Ikram, A.; Qamar, U. A Rule-Based Expert System for Earthquake Prediction. J. Intell. Inf. Syst. 2014, 43, 205–230. [Google Scholar] [CrossRef]
- Pandit, A.; Biswal, K.C. Prediction of earthquake magnitude using adaptive neuro fuzzy inference system. Earth Sci. Inform. 2019, 9, 513–524. [Google Scholar] [CrossRef]
- Luis, S. Predict the magnitudes of seismic events using Bayesian methods. Soil Dyn. Earthq. Eng. 2020, 129, 105914. [Google Scholar] [CrossRef]
- Panakkat, A.; Adeli, H. Neural network models for earthquake magnitude prediction using multiple seismicity indicators. Int. J. Neural Syst. 2007, 17, 13–33. [Google Scholar] [CrossRef]
- Adeli, H.; Panakkat, A. A probabilistic neural network for earthquake magnitude prediction. Neural Netw. 2009, 22, 1018–1024. [Google Scholar] [CrossRef]
- Shi, C. Application of neural network to earthquake engineering. Earthq. Eng. Eng. Vib. 1991, 11, 39–46. [Google Scholar]
- Asim, K.M.; Idris, A.; Iqbal, T.; Martínez-Álvarez, F. Earthquake prediction model using support vector regressor and hybrid neural networks. PLoS ONE 2018, 13, e0199004. [Google Scholar] [CrossRef] [PubMed]
- Morales-Esteban, A.; Martínez-Álvarez, F.; Troncoso, A.; Justo, J.L.; Rubio-Escudero, C. Pattern recognition to forecast seismic time series. Expert Syst. Appl. 2010, 37, 8333–8342. [Google Scholar] [CrossRef]
- Asencio-Cortes, G.; Martinez-Alvarez, F.; Morales-Esteban, A.; Reyes, J.; Troncoso, A. Improving earthquake prediction with principal component analysis application to Chile. In International Conference on Hybrid Artificial Intelligence Systems; Springer: Berlin/Heidelberg, Germany, 2015; pp. 393–404. [Google Scholar]
- Asim, K.M.; Moustafa, S.S.; Niaz, I.A.; Elawadi, E.A.; Iqbal, T.; Martínez-Álvarez, F. Seismicity analysis and machine learning models for short-term low magnitude seismic activity predictions in Cyprus. Soil Dyn. Earthq. Eng. 2020, 130, 105932. [Google Scholar] [CrossRef]
- DeVries, P.M.; Viégas, F.; Wattenberg, M.; Meade, B.J. Deep learning of aftershock patterns following large earthquakes. Nature 2018, 560, 632. [Google Scholar] [CrossRef]
- Huang, J.P.; Wang, X.A.; Zhao, Y.; Xin, C.; Xiang, H. Large earthquake magnitude prediction in Taiwan based on deep learning neural network. Neural Netw. World 2018, 28, 149–160. [Google Scholar] [CrossRef]
- Wang, Q.; Guo, Y.; Yu, L.; Li, P. Earthquake prediction based on spatio-temporal data mining: An LSTM network approach. IEEE Trans. Emerg. Top. Comput. 2020, 8, 148–158. [Google Scholar] [CrossRef]
- Wu, J.; Liang, Y.; Tan, C.; Zhou, W. Method of earthquake prediction based on negative selection. Appl. Res. Comput. 2019, 36, 1097–1100. [Google Scholar]
- Gan, Y.; Liang, Y.; Tan, C.Y.; Zhou, W.; Wu, J.J. Earthquake prediction method based on danger theory. Comput. Eng. 2019, 46, 278–283. [Google Scholar]
- Zhou, W.; Dong, H.; Liang, Y. The deterministic dendritic cell algorithm with Haskell in earthquake magnitude prediction. Earth Sci. Inform. 2020, 13, 447–457. [Google Scholar] [CrossRef]
- Asencio-Cortes, G.; Martinez-Alvarez, F.; Morales-Esteban, A.; Troncoso, A. Medium-large earthquake magnitude prediction in tokyo with artificial neural networks. Neural Comput. Appl. 2017, 28, 1043–1055. [Google Scholar] [CrossRef]
- Alizadeh, E.; Meskin, N.; Khorasani, K. A dendritic cell immune system inspired scheme for sensor fault detection and isolation of wind turbines. IEEE Trans. Ind. Inform. 2017, 14, 545–555. [Google Scholar] [CrossRef]
- Center CEN. National Earthquake Data Center. 2020. Available online: http://data.earthquake.cn (accessed on 30 December 2020).
Indicator | Calculation Methods |
---|---|
where | |
PS | DS | SS | |
---|---|---|---|
CSM | 0.4 | 0.2 | 0.4 |
SEMI | 0 | 0 | −1 |
MAT | 0.4 | 0.2 | 0.4 |
Areas | Number of Data | Mean | SD |
---|---|---|---|
Gansu (DS1) | 1132 | 3.51 | 0.50 |
Qinghai (DS2) | 2086 | 3.67 | 0.61 |
Sichuan (DS3) | 5433 | 3.52 | 0.49 |
Yunnan (DS4) | 3389 | 3.47 | 0.49 |
Date | b | T | c | C | |||||
---|---|---|---|---|---|---|---|---|---|
201810 | 0.77 | 0.001 | −0.21 | 267 | 20 | 1.44 | 0.015 | 3.27 | 0 |
201607 | 0.81 | 0.004 | 0.66 | 167 | 14 | 0.67 | 0.032 | 3.151 | 1 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
201109 | 1.02 | 0.005 | −0.21 | 87 | 10 | 0.61 | 0.033 | 3.29 | 0 |
200102 | 0.75 | 0.003 | −0.01 | 21 | 0 | 0 | 3.555 | 3.007 | 0 |
PPV | NPV | Rn | S | FAR | MCC | AUC | Avg | R | |
---|---|---|---|---|---|---|---|---|---|
DC-NSA | 0.43 | 0.73 | 0.71 | 0.45 | 0.23 | 0.14 | 0.59 | 0.59 | 0.50 |
DCA [22] | 0.43 | 0.75 | 0.72 | 0.53 | 0.25 | 0.18 | 0.60 | 0.61 | 0.47 |
NSA [21] | 0.21 | 0.52 | 0.21 | 0.51 | 0.38 | 0.02 | 0.51 | 0.36 | −0.17 |
PCA-RF [16] | 0.55 | 0.61 | 0.60 | 0.21 | 0.42 | 0.23 | 0.52 | 0.49 | 0.18 |
BPNN [11] | 0.64 | 0.63 | 0.35 | 0.15 | 0.37 | 0.23 | 0.61 | 0.44 | −0.02 |
RNN [2] | 0.27 | 0.75 | 0.68 | 0.32 | 0.24 | 0.04 | 0.48 | 0.51 | 0.44 |
PNN [12] | 0.32 | 0.64 | 0.13 | 0.63 | 0.33 | −0.02 | 0.51 | 0.48 | −0.20 |
EQP-hDCA [23] | 0.32 | 0.74 | 0.70 | 0.37 | 0.26 | 0.06 | 0.53 | 0.53 | 0.44 |
LSTM [19] | 0.42 | 0.81 | 0.69 | 0.31 | 0.23 | 0.12 | 0.54 | 0.56 | 0.46 |
SVR-HNN [14] | 0.38 | 0.76 | 0.67 | 0.29 | 0.28 | 0.09 | 0.51 | 0.53 | 0.39 |
PPV | NPV | Rn | S | FAR | MCC | AUC | Avg | R | |
---|---|---|---|---|---|---|---|---|---|
DC-NSA | 0.84 | 1.00 | 1.00 | 0.96 | 0.00 | 0.91 | 0.97 | 0.95 | 1.00 |
DCA [22] | 0.17 | 0.82 | 0.50 | 0.52 | 0.18 | −0.01 | 0.46 | 0.50 | 0.32 |
NSA [21] | 0.00 | 0.51 | 0.49 | 0.00 | 0.42 | 0.00 | 0.45 | 0.25 | −0.42 |
PCA-RF [16] | 0.61 | 0.56 | 0.58 | 0.77 | 0.41 | 0.02 | 0.43 | 0.63 | 0.37 |
BPNN [11] | 0.67 | 0.96 | 0.67 | 0.04 | 0.04 | 0.63 | 0.82 | 0.58 | 0.63 |
RNN [2] | 0.86 | 0.98 | 0.90 | 0.91 | 0.01 | 0.87 | 0.90 | 0.91 | 0.89 |
PNN [12] | 0.84 | 0.92 | 0.81 | 0.82 | 0.06 | 0.81 | 0.86 | 0.85 | 0.75 |
EQP-hDCA [23] | 0.73 | 1.00 | 1.00 | 0.93 | 0.00 | 0.83 | 0.97 | 0.92 | 1.00 |
LSTM [19] | 0.78 | 0.82 | 0.91 | 0.87 | 0.06 | 0.82 | 0.85 | 0.85 | 0.85 |
SVR-HNN [14] | 0.69 | 0.80 | 0.86 | 0.79 | 0.12 | 0.68 | 0.66 | 0.79 | 0.74 |
PPV | NPV | Rn | S | FAR | MCC | AUC | Avg | R | |
---|---|---|---|---|---|---|---|---|---|
DC-NSA | 0.91 | 1.00 | 1.00 | 0.91 | 0.00 | 0.92 | 0.96 | 0.93 | 1.00 |
DCA [22] | 0.33 | 0.78 | 0.24 | 0.15 | 0.22 | 0.10 | 0.62 | 0.37 | 0.02 |
NSA [21] | 0.33 | 0.69 | 0.73 | 0.49 | 0.28 | 0.18 | 0.62 | 0.56 | 0.45 |
PCA-RF [16] | 0.32 | 0.73 | 0.43 | 0.21 | 0.32 | 0.12 | 0.44 | 0.42 | 0.11 |
BPNN [11] | 0.56 | 0.90 | 0.50 | 0.08 | 0.10 | 0.44 | 0.71 | 0.51 | 0.40 |
RNN [2] | 0.45 | 0.66 | 0.66 | 0.55 | 0.33 | 0.02 | 0.52 | 0.58 | 0.14 |
PNN [12] | 0.47 | 0.79 | 0.64 | 0.59 | 0.19 | 0.38 | 0.51 | 0.62 | 0.45 |
EQP-hDCA [23] | 0.46 | 0.91 | 0.82 | 0.63 | 0.09 | 0.41 | 0.73 | 0.71 | 0.73 |
LSTM [19] | 0.65 | 0.79 | 0.81 | 0.53 | 0.11 | 0.65 | 0.71 | 0.70 | 0.70 |
SVR-HNN [14] | 0.59 | 0.62 | 0.73 | 0.49 | 0.19 | 0.59 | 0.63 | 0.61 | 0.54 |
PPV | NPV | Rn | S | FAR | MCC | AUC | Avg | R | |
---|---|---|---|---|---|---|---|---|---|
DC-NSA | 0.77 | 0.94 | 0.95 | 0.85 | 0.01 | 0.79 | 0.90 | 0.85 | 0.96 |
DCA [22] | 0.33 | 0.58 | 0.50 | 0.59 | 0.42 | −0.09 | 0.43 | 0.50 | 0.08 |
NSA [21] | 0.00 | 0.32 | 0.32 | 0.00 | 0.55 | 0.00 | 0.23 | 0.16 | −0.55 |
PCA-RF [16] | 0.31 | 0.59 | 0.53 | 0.23 | 0.43 | 0.02 | 0.50 | 0.41 | 0.10 |
BPNN [11] | 1.00 | 0.10 | 0.15 | 0.00 | 0.90 | 0.12 | 0.59 | 0.31 | −0.75 |
RNN [2] | 0.63 | 0.67 | 0.59 | 0.60 | 0.28 | 0.55 | 0.57 | 0.62 | 0.31 |
PNN [12] | 0.66 | 0.68 | 0.53 | 0.61 | 0.29 | 0.46 | 0.55 | 0.62 | 0.24 |
EQP-hDCA [23] | 0.67 | 0.98 | 0.97 | 0.77 | 0.02 | 0.70 | 0.87 | 0.85 | 0.95 |
LSTM [19] | 0.35 | 0.31 | 0.48 | 0.42 | 0.21 | 0.57 | 0.46 | 0.39 | 0.37 |
SVR-HNN [14] | 0.37 | 0.56 | 0.61 | 0.59 | 0.16 | 0.65 | 0.56 | 0.53 | 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, W.; Lan, W.; Ye, Z.; Ming, Z.; Chen, J.; He, Q. Adaptive Dendritic Cell-Negative Selection Method for Earthquake Prediction. Electronics 2023, 12, 9. https://doi.org/10.3390/electronics12010009
Zhou W, Lan W, Ye Z, Ming Z, Chen J, He Q. Adaptive Dendritic Cell-Negative Selection Method for Earthquake Prediction. Electronics. 2023; 12(1):9. https://doi.org/10.3390/electronics12010009
Chicago/Turabian StyleZhou, Wen, Wuyang Lan, Zhiwei Ye, Zhe Ming, Jingliang Chen, and Qiyi He. 2023. "Adaptive Dendritic Cell-Negative Selection Method for Earthquake Prediction" Electronics 12, no. 1: 9. https://doi.org/10.3390/electronics12010009
APA StyleZhou, W., Lan, W., Ye, Z., Ming, Z., Chen, J., & He, Q. (2023). Adaptive Dendritic Cell-Negative Selection Method for Earthquake Prediction. Electronics, 12(1), 9. https://doi.org/10.3390/electronics12010009