Reduction of Complexity Design of SAC OCDMA Systems by Utilizing Diagonal Permutation Shift (DPS) Codes with Single Photodiode (SPD) Detection Technique
Abstract
:1. Introduction
2. Code Construction and Code Properties
2.1. Algorithm of Code Construction
2.2. Code Properties
- A unity CC between any sequences.
- The number of users N = .
- The code weight can be any prime number greater than 2.
- The code length equals .
- Each code sequence has (P + 1) “1s” and ( − 1) “0s”.
2.3. Code Examples
3. DPS System Description
4. Detection Techniques Selection
4.1. Complementary Detection Scheme (CDS)
4.2. Single Photodiode (SPD)
4.3. Pickup of Detection Scheme
5. Performance Analysis
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salehi, J.A.; Brackett, C.A. Code division multiple access techniques in optical fiber network—Part II: System performance analysis. IEEE Trans. Commun. 1989, 37, 834–842. [Google Scholar] [CrossRef]
- Ahmed, H.Y.; Nisar, K.S. Diagonal Eigenvalue Unity (DEU) code for spectral amplitude coding-optical code division multiple access. Opt. Fiber Technol. 2013, 19, 335–347. [Google Scholar] [CrossRef]
- Wei, Z.; Shalaby, H.M.H.; Ghafouri-Shiraz, H. Modified Quadratic Congruence codes for Fiber Bragg-Grating-Based SAC-OCDMA. J. Light. Technol. 2002, 50, 1209–1212. [Google Scholar]
- Wei, Z.; Ghafouri-Shiraz, H. Code for spectral amplitude-coding optical CDMA systems. J. Light. Technol. 2002, 20, 1284–1291. [Google Scholar]
- Abd, T.H.; Aljunid, S.A.; Fadhil, H.A.; Ahmad, R.B.; Junita, M.N. Enhancement of performance of a hybrid SAC-OCDMA system using dynamic cyclic shift code. Ukr. J. Phys. Opt. 2012, 13, 12–27. [Google Scholar] [CrossRef]
- Tseng, S.-P.; Wu, J. A new code family suitable for high-rate SAC OCDMA PONs applications. IEEE J. Sel. Areas Commun. 2010, 28, 827–837. [Google Scholar] [CrossRef]
- Fadhil, H.A.; Aljunid, S.A.; Ahmad, R.B. Performance of random diagonal code for OCDMA systems using new spectral direct detection technique. Opt. Fiber Technol. 2009, 15, 283–289. [Google Scholar] [CrossRef]
- Ahmed, H.Y.; Zeghid, M.; Imtiaz, W.A.; Sherief, Y.; Aabdalla, O. Sigma Shift Matrix (SSM) code Supporting QoS for Spectral Amplitude Coding-Optical Code Division Multiple Access. Opt. Fiber Technol. 2019, 47, 73–87. [Google Scholar] [CrossRef]
- Imtiaz, W.A.; Ahmad, N. Cardinality enhancement of SAC OCDMA systems using new diagonal double weight code. Int. J. Commun. Netw. Inf. Secur. 2014, 6, 226–232. [Google Scholar]
- Hasoon, F.N.; Abdullah, M.K.; Aljundi, S.A.; Shaari, S.B.H. Construction of new code for spectral amplitude coding in optical code division multiple access systems. J. Opt. Eng. 2007, 46, 75004–75008. [Google Scholar]
- Fadhil, H.A.; Aljunid, S.A.; Ahmad, R.B. Design considerations of high performance optical code division multiple access: A new spectral amplitude code based on laser and light emitting diode light source. IET Optoelectron. 2010, 4, 29–34. [Google Scholar] [CrossRef]
- Stok, A.; Sargent, E.H. Lighting the local network: Optical code division multiple access and quality of service provisioning. IEEE Netw. 2000, 6, 42–46. [Google Scholar]
- Ahmed, Y.H.; Gharsseldien, Z.M.; Aljunid, S.A. Performance analysis of diagonal permutation shifting (DPS) codes for SAC-OCDMA systems. J. Inf. Sci. Eng. 2017, 33, 433–448. [Google Scholar]
- Al-Khafaji, H.M.R.; Aljundi, S.A.; Amphawan, A.; Fadhil, H.A.; Safar, A.M. Reducing BER of spectral-amplitude coding optical code division multiple-access systems by single photodiode detection technique. J. Eur. Opt. Soc. Rapid Publ. 2013, 8, 13022. [Google Scholar] [CrossRef] [Green Version]
- Abd El-Mottaleb, S.A.; Fayed, H.A.; Abd El-Aziz, A.; Metawee, M.A.; Aly, M.H. Enhanced Spectral Amplitude Coding OCDMA System Utilizing a Single Photodiode Detection. Appl. Sci. 2018, 8, 1861. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, H.Y.; Zeghid, M.; Imtiaz, W.A.; Sharief, Y.; Sghaier, A. A tradeoff for dispersion compensating fibers (DCFs) deployment in SAC-OCDMA environment using 2D-Fixed Right Shift (2D-FRS) code. Optik 2019, 185, 746–758. [Google Scholar] [CrossRef]
i/j | 0 | 1 | 2 | P − 1 | |
0 | 0 | 0 | 0 | 0 | |
1 | 0 | 1 | 2 | P − 1 | |
2 | 0 | 2 | 4 | P − 2 | |
P − 1 | 0 | P − 1 | P − 2 | 1 |
i | j = 0, 1, 2, 3 | DPS Code | |||
---|---|---|---|---|---|
0 | 0110 | 100 | 010 | 010 | 100 |
1 | 1011 | 010 | 100 | 010 | 010 |
2 | 1102 | 010 | 010 | 100 | 001 |
3 | 1220 | 010 | 001 | 001 | 100 |
4 | 2121 | 001 | 010 | 001 | 010 |
5 | 2212 | 001 | 001 | 010 | 001 |
6 | 2000 | 001 | 100 | 100 | 100 |
7 | 0201 | 100 | 001 | 100 | 010 |
8 | 0022 | 100 | 100 | 001 | 001 |
Wavelength (nm) | 1550 | 1550.8 | 1551.6 | 1552.4 | 1553.2 | 1554 | 1554.8 | 1555.6 | 1556.4 | 1557.2 | 1558 | 1558.8 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
User#1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
User#2 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
User#3 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
Decoder (User#1) | 100010010100 |
User#2 (first interference with user#1) | 010100010010 |
User#3 (second interference with user#1) | 010100010010 |
(Decoder × User#2) | 000000010000 |
CC of (Decoder × User#2) | 1 |
011101101011 | |
(User#2 × User#3) | 010000000000 |
S-Decoder = | 010000000000 |
(User#2 × S-Decoder) | 010000000000 |
CC of (Decoder × User#2) | 1 |
CC of (Decoder × User#2)—CC of (Decoder × User#2) | 1-1 0 |
Components | FBGs | Subtractor | PIN | LPF | |
---|---|---|---|---|---|
User#1 | Complementary | 4 FBGs in the decoder branch and 8 FBGs in complementary | One | 2 | One |
SPD | 4 FBGs used as decoder and one FBG as S-Decoder | One | One | One | |
User#2 | Complementary | 4 FBGs in the decoder branch and 8 FBGs in complementary | one | 2 | One |
SPD | 4 FBGs used as decoder and one FBG as S-Decoder | One | One | One | |
User#3 | Complementary | 4 FBGs in the decoder branch and 8 FBGs in complementary | One | 2 | One |
SPD | 4 FBGs used as decoder and one FBG as S-Decoder | One | One | One | |
Total | Complementary | 36 FBGs | 3 | 6 | 3 |
SPD | 15 FBGs | 3 | 3 | 3 |
Parameter | Value |
---|---|
Transmitter optical power | 9 dBm |
Bo: Optical bandwidth | 3.75 MHz |
Rb: Data bit rate | 622 Mbps |
Be: Electrical bandwidth | 0.75 Rb |
Single mode fiber dispersion | 17 ps/nm/km |
Single mode fiber slope | 0.075 ps/nm2/km |
Single mode fiber attenuation | 0.25 dB/km |
: Responsivity | 0.7 |
e: Electron charge | 1.6 × 10−19 C |
h: Planck’s constant | 6.66 × 10−34 J·S |
Kb: Boltzmann constant | 1.38 × 10−23 J/K |
Tn: Receiver noise absolute | 300 K |
RL: Receiver load resistance |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, H.Y.; Zeghid, M.; Bouallegue, B.; Chehri, A.; Abd El-Mottaleb, S.A. Reduction of Complexity Design of SAC OCDMA Systems by Utilizing Diagonal Permutation Shift (DPS) Codes with Single Photodiode (SPD) Detection Technique. Electronics 2022, 11, 1224. https://doi.org/10.3390/electronics11081224
Ahmed HY, Zeghid M, Bouallegue B, Chehri A, Abd El-Mottaleb SA. Reduction of Complexity Design of SAC OCDMA Systems by Utilizing Diagonal Permutation Shift (DPS) Codes with Single Photodiode (SPD) Detection Technique. Electronics. 2022; 11(8):1224. https://doi.org/10.3390/electronics11081224
Chicago/Turabian StyleAhmed, Hassan Yousif, Medien Zeghid, Belgacem Bouallegue, Abdellah Chehri, and Somia A. Abd El-Mottaleb. 2022. "Reduction of Complexity Design of SAC OCDMA Systems by Utilizing Diagonal Permutation Shift (DPS) Codes with Single Photodiode (SPD) Detection Technique" Electronics 11, no. 8: 1224. https://doi.org/10.3390/electronics11081224