Next Article in Journal
Die-Level Thinning for Flip-Chip Integration on Flexible Substrates
Previous Article in Journal
High-Performance Magnetoinductive Directional Filters
Previous Article in Special Issue
Low-Cost Wireless Wearable System for Posture Monitoring
 
 
Article

Selected Energy Consumption Aspects of Sensor Data Transmission in Distributed Multi-Microcontroller Embedded Systems

AGH University of Science and Technology, 30-059 Kraków, Poland
*
Author to whom correspondence should be addressed.
Academic Editor: Giovanni Crupi
Electronics 2022, 11(6), 848; https://doi.org/10.3390/electronics11060848
Received: 5 February 2022 / Revised: 1 March 2022 / Accepted: 4 March 2022 / Published: 8 March 2022
(This article belongs to the Special Issue Low-Cost Telemedicine Technology: Challenges and Solutions)
Wireless network devices are currently a hot topic in research related to human health, control systems, smart homes, and the Internet of Things (IoT). In the shadow of the coronavirus pandemic, they have gained even more attention. This remote and contactless distributed sensing technology enabled monitoring of vital signs in real-time. Many of the devices are battery powered, so appropriate management of available energy is crucial for lengthening autonomous operation time without affecting weight, size, maintenance requirement, and user acceptance. In this paper, we discuss energy consumption aspects of sensor data transmission using wireless Bluetooth Low Energy Mesh Long Range (BLE-M-LR) technology. Papers in the field of energy savings in wireless networks do not directly address the problem of the dependence of the energy needed for transmission on the type and degree of data preprocessing, which is the novelty and uniqueness of this work. We built and studied a prototype system designed to work as a multimodal sensing node in a compound IoT application targeted to assisted living. To analyze multiple energy-related aspects, we tested it in various operation and data transmission modes: continuous, periodic, and event-based. We also implemented and tested two alternative sensor-side processing procedures: deterministic data stream reduction and neural network-based recognition and labeling of the states. Our results reveal that event-based or periodic operation allows the node for years-long operating, and the sensor-side processing may degrade the power economy more than it benefits from savings made on transmission of concise data. View Full-Text
Keywords: embedded system; distributed system; multi-microcontroller system; artificial intelligence; intelligence sensor system; wireless transmission sensor network embedded system; distributed system; multi-microcontroller system; artificial intelligence; intelligence sensor system; wireless transmission sensor network
Show Figures

Figure 1

MDPI and ACS Style

Szymczyk, M.; Augustyniak, P. Selected Energy Consumption Aspects of Sensor Data Transmission in Distributed Multi-Microcontroller Embedded Systems. Electronics 2022, 11, 848. https://doi.org/10.3390/electronics11060848

AMA Style

Szymczyk M, Augustyniak P. Selected Energy Consumption Aspects of Sensor Data Transmission in Distributed Multi-Microcontroller Embedded Systems. Electronics. 2022; 11(6):848. https://doi.org/10.3390/electronics11060848

Chicago/Turabian Style

Szymczyk, Magdalena, and Piotr Augustyniak. 2022. "Selected Energy Consumption Aspects of Sensor Data Transmission in Distributed Multi-Microcontroller Embedded Systems" Electronics 11, no. 6: 848. https://doi.org/10.3390/electronics11060848

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop