Next Article in Journal
A Dual CNN for Image Super-Resolution
Previous Article in Journal
Enhanced Robots as Tools for Assisting Agricultural Engineering Students’ Development
 
 
Article

Performance of an Adaptive Aggregation Mechanism in a Noisy WLAN Downlink MU-MIMO Channel

1
School of Information and Software Engineering, University of Electronic Science and Technology China (UESTC), Chengdu 610054, China
2
Communication Network Research Institute (CNRI), Technological University Dublin, D08 NF82 Dublin, Ireland
*
Author to whom correspondence should be addressed.
Academic Editors: Hugo Morais, Junjie Hu and Matej Zajc
Electronics 2022, 11(5), 754; https://doi.org/10.3390/electronics11050754
Received: 8 January 2022 / Revised: 11 February 2022 / Accepted: 15 February 2022 / Published: 1 March 2022
This paper investigates an adaptive frame aggregation technique in the medium access control (MAC) layer for the Wireless Local Area Network (WALN) downlink Multi-User–Multiple-In Multiple-Out (MU-MIMO) channel. In tackling the challenges of heterogeneous traffic demand among spatial streams, we proposed a new adaptive aggregation algorithm which has a superior performance over the baseline First-in–First-Out (FIFO) scheme in terms of system throughput performance and channel utilization. However, this earlier work does not consider the effects of wireless channel error. In addressing the limitations of this work, this study contributes an enhanced version of the earlier model considering the effect of channel error. In this approach, a dynamic adaptive aggregation selection scheme is proposed by employing novel criteria for selecting the optimal aggregation policy in WLAN downlink MU-MIMO channel. Two simulation setups are conducted to achieve this approach. The simulation setup in Step 1 performs the dynamic optimal aggregation policy selection strategy as per the channel condition, traffic pattern, and number of stations in the network. Step 2 then performed the optimal wireless frame construction that would be transmitted in the wireless channel in adopting the optimal aggregation policy obtained from Step 1 that maximizes the system performance. The proposed adaptive algorithm not only achieve the optimal system throughput in minimizing wasted space channel time but also provide a good performance under the effects of different channel conditions, different traffic models such as Pareto, Weibull, and fBM, and number of users using the traffic mix of VoIP and video data. Through system-level simulation, our results again show the superior performance of our proposed aggregation mechanism in terms of system throughput performance and space channel time compared to the baseline FIFO aggregation approach. View Full-Text
Keywords: channel error; frame size adaptation; heterogeneous traffic; MU-MIMO wireless local area networks (WLANs); wasted space channel time channel error; frame size adaptation; heterogeneous traffic; MU-MIMO wireless local area networks (WLANs); wasted space channel time
Show Figures

Figure 1

MDPI and ACS Style

Kassa, L.; Davis, M.; Deng, J.; Cai, J. Performance of an Adaptive Aggregation Mechanism in a Noisy WLAN Downlink MU-MIMO Channel. Electronics 2022, 11, 754. https://doi.org/10.3390/electronics11050754

AMA Style

Kassa L, Davis M, Deng J, Cai J. Performance of an Adaptive Aggregation Mechanism in a Noisy WLAN Downlink MU-MIMO Channel. Electronics. 2022; 11(5):754. https://doi.org/10.3390/electronics11050754

Chicago/Turabian Style

Kassa, Lemlem, Mark Davis, Jianhua Deng, and Jingye Cai. 2022. "Performance of an Adaptive Aggregation Mechanism in a Noisy WLAN Downlink MU-MIMO Channel" Electronics 11, no. 5: 754. https://doi.org/10.3390/electronics11050754

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop