Multi-Carrier Signal Recognition Method Based on Multi-Feature Input and Hybrid Training Neural Network
Abstract
:1. Introduction
2. Principle
2.1. OFDM Signal Model
2.2. High-Order Statistics Feature
2.3. Constellation Diagram Feature
2.4. Multi-Feature Input and Hybrid Training Neural Network
3. Simulation Setup and Performance Analysis
3.1. Simulation Setup
3.2. Performance Analysis
3.2.1. Identification Performance under Different Neural Network Model Parameters
3.2.2. Recognition Performance Using Different Methods
3.2.3. Identification Performance in Turbulence Channel
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fields, R.; Lunde, C.; Wong, R.; Wicker, J.; Kozlowski, D.; Jordan, J.; Hansen, B.; Muehlnikel, G.; Scheel, W.; Sterr, U.; et al. NFIRE-to-TerraSAR-X Laser Communication Results: Satellite Pointing, Disturbances, and Other Attributes Consistent with Successful Performance. In Proceedings of the SPIE—The International Society for Optical Engineering, Orlando, FL, USA, 14–15 April 2009; Volume 7330, pp. 1–15. [Google Scholar]
- Boroson, D.M.; Robinson, B.S.; Burianek, D.A.; Murphy, D.V.; Biswas, A. Overview and status of the Lunar Laser Communications Demonstration. In Proceedings of the SPIE—The International Society for Optical Engineering, SPIE, San Francisco, CA, USA, 23 January 2012; Volume 8971, pp. 1–11. [Google Scholar]
- Luzhanskiy, E.; Edwards, B.; Israel, D.; Cornwell, D.; Staren, J.; Cummings, N.; Roberts, T.; Patschke, R. Overview and status of the laser communication relay demonstration. In Proceedings of the SPIE LASE International Society for Optics and Photonics, SPIE, San Francisco, CA, USA, 13–18 February 2016; Volume 9739, pp. 1–14. [Google Scholar]
- Wang, X.; Zhang, Q.; Xin, X.; Gao, R.; Tian, Q.; Tian, F.; Wang, C.; Pan, X.; Wang, Y.; Yang, L. Robust weighted K-means clustering algorithm for a probabilistic-shaped 64QAM coherent optical communication system. Opt. Express 2019, 27, 37601–37613. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, Q.; Xin, X.; Gao, R.; Lv, K.; Tian, Q.; Tian, F.; Wang, C.; Pan, X.; Wang, Y.; et al. Robust and Low-Complexity Principal Component-Based Phase Estimation Algorithm for Probabilistically Shaped Square-QAM Systems. J. Lightwave Technol. 2020, 38, 6153–6162. [Google Scholar] [CrossRef]
- Mai, T.; Yao, H.; Zhang, N.; Xu, L.; Guizani, M.; Guo, S. Cloud Mining Pool Aided Blockchain-Enabled Internet of Things: An Evolutionary Game Approach. IEEE Trans. Cloud Comput. 2021, 1. [Google Scholar] [CrossRef]
- Mai, T.; Yao, H.; Zhang, N.; He, W.; Guo, D.; Guizani, M. Transfer Reinforcement Learning Aided Distributed Network Slicing Resource Optimization in Industrial IoT. IEEE Trans. Ind. Inform. 2021, 1. [Google Scholar] [CrossRef]
- Ohtsuki, T. Multiple-subcarrier modulation in optical wireless communications. IEEE Commun. Mag. 2003, 41, 74–79. [Google Scholar] [CrossRef]
- Chaudhary, S.; Amphawan, A.; Nisar, K. Realization of free space optics with OFDM under atmospheric turbulence. Optik—Int. J. Light Electron Opt. 2014, 125, 5196–5198. [Google Scholar] [CrossRef]
- Ajewole, B.D.; Odeyemi, K.O.; Owolawi, P.A.; Srivastava, V.M. Performance of OFDM-FSO Communication System with Different Modulation Schemes over Gamma-Gamma Turbulence Channel. J. Commun. 2019, 14, 490–497. [Google Scholar] [CrossRef]
- Darwesh, L.; Kopeika, N. Improved Performance in the Detection of ACO-OFDM Modulated Signals Using Deep Learning Modules. Appl. Sci. 2020, 10, 8380. [Google Scholar] [CrossRef]
- Wang, F.; Yao, H.; Zhang, Q.; Wang, J.; Gao, R.; Guo, D.; Guizani, M. Dynamic Distributed Multi-Path Aided Load Balancing for Optical Data Center Networks. IEEE Trans. Netw. Serv. Manag. 2021, 1. [Google Scholar] [CrossRef]
- Yao, H.; Liu, C.; Zhang, P.; Wu, S.; Jiang, C.; Yu, S. Identification of Encrypted Traffic Through Attention Mechanism Based Long Short-Term Memory. IEEE Trans. Big Data 2019, 8, 241–252. [Google Scholar] [CrossRef]
- Qiu, C.; Yao, H.; Jiang, C.; Guo, S.; Xu, F. Cloud Computing Assisted Blockchain-Enabled Internet of Things. IEEE Trans. Cloud Comput. 2019, 1. [Google Scholar] [CrossRef]
- Li, F.; Yao, H.; Du, J.; Jiang, C.; Han, Z.; Liu, Y. Auction Design for Edge Computation Ofloading in SDN-based Ultra Dense Networks. IEEE Trans. Mob. Comput. 2020, 1. [Google Scholar] [CrossRef]
- Weaver, C.S.; Cole, C.A.; Krumland, R.B.; Miller, M.L. The Automatic Classification of Modulation Types by Pattern Recognition; Technical Report; Standford Electronics Laboratoris: Stanford, CA, USA, 1969; pp. 101–105. [Google Scholar]
- Azzouz, E.E.; Nandi, A.K. Automatic Modulation Recognition of Communication Signals; Springer: New York, NY, USA, 1996. [Google Scholar]
- Wang, D.; Zhang, M.; Li, J.; Li, Z.; Li, J.; Song, C.; Chen, X. Intelligent constellation diagram analyzer using convolutional neural network-based deep learning. Opt. Express 2017, 25, 17150. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Jiang, Y.; Gao, Y.; Feng, Z.; Zhang, P. Automatic Modulation Classification Using Contrastive Fully Convolutional Network. IEEE Wirel. Commun. Lett. 2019, 8, 1044–1047. [Google Scholar] [CrossRef]
- Jantti, J.; Chaudhari, S.; Koivunen, V. Detection and Classification of OFDM Waveforms Using Cepstral Analysis. IEEE Trans. Signal Process. 2015, 63, 4284–4299. [Google Scholar] [CrossRef]
- Liu, Y.; Simeone, O.; Haimovich, A.M.; Su, W. Modulation Classification for MIMO-OFDM Signals via Approximate Bayesian Inference. IEEE Trans. Veh. Technol. 2016, 66, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.; Kumar, S.; Majhi, S. Blind Modulation Classification for Asynchronous OFDM Systems Over Unknown Signal Parameters and Channel Statistics. IEEE Trans. Veh. Technol. 2020, 69, 5281–5292. [Google Scholar] [CrossRef]
- Roshani, M.; Sattari, M.A.; Ali, P.J.M.; Roshani, G.H.; Nazemi, B.; Corniani, E.; Nazemi, E. Application of GMDH neural network technique to improve measuring precision of a simplified photon attenuation based two-phase flowmeter. Flow Meas. Instrum. 2020, 75, 101804. [Google Scholar] [CrossRef]
- Zaidi, A.; Aguerri, I.E.; Shamai, S. On the Information Bottleneck Problems: Models, Connections, Applications and Information Theoretic Views. Entropy 2020, 22, 151. [Google Scholar] [CrossRef] [Green Version]
- Aguerri, I.E.; Zaidi, A. Distributed Variational Representation Learning. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 120–138. [Google Scholar] [CrossRef] [Green Version]
- McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-Efficient Learning of Deep Networks from Decentralized Data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Lauderdale, FL, USA, 20–22 April 2016. [Google Scholar]
- Amiri, M.M.; Gunduz, D. Federated Learning over Wireless Fading Channels. IEEE Trans. Wirel. Commun. 2020, 19, 3546–3557. [Google Scholar] [CrossRef] [Green Version]
- Swami, A.; Sadler, B.M. Hierarchical digital modulation classification using cumulants. IEEE Trans. Commun. 2000, 48, 416–429. [Google Scholar] [CrossRef]
- Jiang, L.; Yan, L.; Yi, A.; Pan, Y.; Hao, M.; Pan, W.; Luo, B. An Effective Modulation Format Identification Based on Intensity Profile Features for Digital Coherent Receivers. J. Lightwave Technol. 2019, 37, 5067–5075. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Number of sub-carriers | 200 |
Number of symbols | 100 |
IFFT length | 512 |
Cyclic prefix length | 128 |
Cyclic suffix length | 20 |
Ascending cosine window coefficient | 1.5/32 |
Modulation formats | BPSK\QPSK\8PSK\16QAM |
Division ratio of training and test data | 3:1 |
Parameter | Value |
---|---|
Loss function | Cross-entropy |
Optimizer | Adam optimizer |
Epochs | 10 |
Batch | 64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Cui, Y.; Zhang, Q.; Li, Z.; Gao, R.; Tian, F.; Tian, Q.; Liu, B.; Jiang, J.; Wang, Y.; et al. Multi-Carrier Signal Recognition Method Based on Multi-Feature Input and Hybrid Training Neural Network. Electronics 2022, 11, 579. https://doi.org/10.3390/electronics11040579
Li S, Cui Y, Zhang Q, Li Z, Gao R, Tian F, Tian Q, Liu B, Jiang J, Wang Y, et al. Multi-Carrier Signal Recognition Method Based on Multi-Feature Input and Hybrid Training Neural Network. Electronics. 2022; 11(4):579. https://doi.org/10.3390/electronics11040579
Chicago/Turabian StyleLi, Shanshan, Yi Cui, Qi Zhang, Zhipei Li, Ran Gao, Feng Tian, Qinghua Tian, Bingchun Liu, Jinkun Jiang, Yongjun Wang, and et al. 2022. "Multi-Carrier Signal Recognition Method Based on Multi-Feature Input and Hybrid Training Neural Network" Electronics 11, no. 4: 579. https://doi.org/10.3390/electronics11040579
APA StyleLi, S., Cui, Y., Zhang, Q., Li, Z., Gao, R., Tian, F., Tian, Q., Liu, B., Jiang, J., Wang, Y., & Xin, X. (2022). Multi-Carrier Signal Recognition Method Based on Multi-Feature Input and Hybrid Training Neural Network. Electronics, 11(4), 579. https://doi.org/10.3390/electronics11040579