An Empirical Study of Mobile Commerce and Customers Security Perception in Saudi Arabia
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
4. Results
4.1. Amazon KSA
4.2. CenterPoint
4.3. Hunger Station
4.4. Namshi
4.5. NOON
4.6. OUNAS
4.7. SHEIN
5. Discussion
5.1. Theoretical Implications
5.2. Practical Implications
5.3. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reychav, I.; Beeri, R.; Balapour, A.; Raban, D.R.; Sabherwal, R.; Azuri, J. How reliable are self-assessments using mobile technology in healthcare? The effects of technology identity and self-efficacy. Comput. Hum. Behav. 2019, 91, 52–61. [Google Scholar] [CrossRef]
- Taneja, B. The Digital Edge for M-Commerce to Replace E-Commerce. In Emerging Challenges, Solutions, and Best Practices for Digital Enterprise Transformation; IGI Global: Hershey, PA, USA, 2021; pp. 299–318. [Google Scholar]
- Ortiz, J. The global environment through the SLEPT framework. Int. J. Bus. Glob. 2010, 5, 475–492. [Google Scholar] [CrossRef]
- Chaffey, D.; Edmundson-Bird, D.; Hemphill, T. Digital Business and E-Commerce Management; Pearson: London, UK, 2019. [Google Scholar]
- Saeed, S.; Bolívar, M.P.R.; Thurasamy, R. Pandemic, Lockdown, and Digital Transformation; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Niranjanamurthy, M.; Kavyashree, N.; Chahar, S.J.D. Analysis of E-Commerce and M-Commerce: Advantages, Limitations and Security issues. Int. J. Adv. Res. Comput. Commun. Eng. 2013, 2, 2360–2370. [Google Scholar]
- D’Adamo, I.; González-Sánchez, R.; Medina-Salgado, M.S.; Settembre-Blundo, D. E-Commerce Calls for Cyber-Security and Sustainability: How European Citizens Look for a Trusted Online Environment. Sustainability 2021, 13, 6752. [Google Scholar] [CrossRef]
- Pabian, A.; Pabian, B.; Reformat, B. E-Customer Security as a Social Value in the Sphere of Sustainability. Sustainability 2020, 12, 10590. [Google Scholar] [CrossRef]
- Fathima, K.; Balaji, D.S. Enhancing Security in M-Commerce Transactions Enhancing Security in M-Commerce Transactions. Ann. Rom. Soc. Cell Biol. 2021, 25, 3915–3921. [Google Scholar]
- Clemons, E.K.; Wilson, J.; Matt, C.; Hess, T.; Ren, F.; Jin, F.; Koh, N.S. Global Differences in Online Shopping Behavior: Understanding Factors Leading to Trust. J. Manag. Inf. Syst. 2016, 33, 1117–1148. [Google Scholar] [CrossRef]
- Mohammed, Z.A.; Tejay, G.P. Examining privacy concerns and ecommerce adoption in developing countries: The impact of culture in shaping individuals’ perceptions toward technology. Comput. Secur. 2017, 67, 254–265. [Google Scholar] [CrossRef]
- Lee, D.; LaRose, R.; Rifon, N. Keeping our network safe: A model of online protection behaviour. Behav. Inf. Technol. 2008, 27, 445–454. [Google Scholar] [CrossRef]
- Alotaibi, A.R.; Faleel, J. Investigating the prferred methods of payment for online shopping by Saudi Customers. PalArch’s J. Archaeol. Egypt Egyptol. 2021, 18, 1041–1051. [Google Scholar]
- Hidayat, A.; Wijaya, T.; Ishak, A.; Catyanadika, P.E. Consumer Trust as the Antecedent of Online Consumer Purchase Decision. Information 2021, 12, 145. [Google Scholar] [CrossRef]
- Saprikis, V.; Avlogiaris, G. Factors That Determine the Adoption Intention of Direct Mobile Purchases through Social Media Apps. Information 2021, 12, 449. [Google Scholar] [CrossRef]
- Taherdoost, H.; Madanchian, M. Empirical Modeling of Customer Satisfaction for E-Services in Cross-Border E-Commerce. Electronics 2021, 10, 1547. [Google Scholar] [CrossRef]
- Harris, M.A.; Brookshire, R.; Chin, A.G. Identifying factors influencing consumers’ intent to install mobile applications. Int. J. Inf. Manag. 2016, 36, 441–450. [Google Scholar] [CrossRef]
- Ghayoumi, M. Review of Security and Privacy Issues in e-Commerce. In Proceedings of the International Conference on e-Learning, e-Business, Enterprise Information Systems, and e-Government, Las Vegas, NV, USA, 25–28 July 2016; p. 156. [Google Scholar]
- Mahmoud, M.A.; Khrais, L.; AlOlayan, R.M.; Alkaabi, A.M.; Suwaidi, S.Q.A.; Alghamdi, B.A.; Aljuwaie, H.F. Consumers Trust, Privacy and Security Issues on Mobile Commerce Websites. Mod. Appl. Sci. 2019, 13, p21. [Google Scholar] [CrossRef]
- Kumar, U.; Gope, A.K.; Singh, S. Emerging Challenges and Opportunities of Mobile Commerce in India: A Study on Societal Perspective. Comput. Trendz J. Emerg. Trends Inf. Technol. 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Hoehle, H.; Aloysius, J.A.; Nikkhah, H.R. Being at the cutting edge of online shopping: Role of recommendations and discounts on privacy perceptions. Comput. Hum. Behav. 2021, 121, 106785. [Google Scholar] [CrossRef]
- Gurung, A.; Raja, M.K. Online privacy and security concerns of consumers. Inf. Comput. Secur. 2016, 24, 348–371. [Google Scholar] [CrossRef]
- Ali, B.J. Impact of COVID-19 on consumer buying behavior toward online shopping in Iraq. Econ. Stud. J. 2020, 18, 267–280. [Google Scholar]
- Vărzaru, A.A.; Bocean, C.G.; Rotea, C.C.; Budică-Iacob, A.-F. Assessing Antecedents of Behavioral Intention to Use Mobile Technologies in E-Commerce. Electronics 2021, 10, 2231. [Google Scholar] [CrossRef]
- Hussien, F.T.A.; Rahma, A.M.S.; Wahab, H.B.A. Design and implement a new secure prototype structure of e-commerce system. Int. J. Electr. Comput. Eng. 2022, 12, 560–571. [Google Scholar]
- Chen, C.-M.; Cai, Z.-X.; Wen, D.-W. Designing and Evaluating an Automatic Forensic Model for Fast Response of Cross-Border E-Commerce Security Incidents. J. Glob. Inf. Manag. 2022, 30, 1–19. [Google Scholar] [CrossRef]
- Miao, J.J.; Tran, Q.D. Study on e-commerce adoption in SMEs under the institutional perspective: The case of Saudi Arabia. Int. J. E-Adopt. (IJEA) 2018, 10, 53–72. [Google Scholar]
- Nachar, M. Factors that Predict the Adoption of Online Shopping in Saudi Arabia. Ph.D. Thesis, Walden University, Columbia, MD, USA, 16 April 2019. [Google Scholar]
- Al-Ayed, S. The impact of e-commerce drivers on e-customer loyalty: Evidence from KSA. Int. J. Data Netw. Sci. 2022, 6, 73–80. [Google Scholar] [CrossRef]
- Saeed, S. Digital Business adoption and customer segmentation: An exploratory study of expatriate community in Saudi Arabia. ICIC Express Lett. 2019, 13, 133–139. [Google Scholar]
- Alotaibi, R.S. Understanding customer loyalty of M-commerce applications in Saudi Arabia. Int. Trans. J. Eng. Manag. Appl. Sci. Technol. 2021, 12, 1–12. [Google Scholar]
- Razi, M.J.M.; Sarabdeen, M.; Tamrin, M.I.M.; Kijas, A.C.M. Influencing Factors of Social Commerce Behavior in Saudi Arabia. In Proceedings of the 2019 International Conference on Computer and Information Sciences (ICCIS), Sakaka, Saudi Arabia, 3–4 April 2019; pp. 1–4. [Google Scholar]
- Top Apps Ranking. Available online: https://www.similarweb.com/apps/top/google/store-rank/sa/shopping/top-free/ (accessed on 1 October 2021).
- Furnell, S.M.; Karweni, T. Security implications of electronic commerce: A survey of consumers and businesses. Internet Res. 1999, 9, 372–382. [Google Scholar] [CrossRef] [Green Version]
- Naderifar, M.; Goli, H.; Ghaljaei, F. Snowball Sampling: A Purposeful Method of Sampling in Qualitative Research. Strides Dev. Med. Educ. 2017, 14. [Google Scholar] [CrossRef] [Green Version]
- Lowry, P.B.; Gaskin, J. Partial Least Squares (PLS) Structural Equation Modeling (SEM) for Building and Testing Behavioral Causal Theory: When to Choose It and How to Use It. IEEE Trans. Dependable Secur. Comput. 2014, 57, 123–146. [Google Scholar] [CrossRef]
- Ringle, C.M.; Wende, S.; Becker, J.-M. SmartPLS. Available online: https://www.smartpls.com/ (accessed on 1 October 2021).
- Sargani, G.R.; Jiang, Y.; Zhou, D.; Chandio, A.A.; Hussain, M.; Khan, N. Endorsing Sustainable Enterprises Among Promising Entrepreneurs: A Comparative Study of Factor-Driven Economy and Efficiency-Driven Economy. Front. Psychol. 2021, 12, 735127. [Google Scholar] [CrossRef] [PubMed]
- Hair, J.F.; Sarstedt, M.; Hopkins, L.; Kuppelwieser, V.G. Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. Eur. Bus. Rev. 2014, 26, 106–121. [Google Scholar] [CrossRef]
- Bangun, C.S.; Handra, T. How Theory of Planned Behavior And Percieved Risk Affect Online Shopping Behavior. Aptisi Trans. Manag. (ATM) 2021, 5, 169–179. [Google Scholar] [CrossRef]
- Habib, S.; Hamadneh, N.N. Impact of Perceived Risk on Consumers Technology Acceptance in Online Grocery Adoption amid COVID-19 Pandemic. Sustainability 2021, 13, 10221. [Google Scholar] [CrossRef]
- Rogers, R.W. A Protection Motivation Theory of Fear Appeals and Attitude Change. J. Psychol. Interdiscip. Appl. 1975, 91, 93–114. [Google Scholar] [CrossRef] [PubMed]
- Nabi, F.; Malhi, M.S.; Farhan, M.; Mahmood, U. Process of Security Assurance Technique for Application Functional Logic in E-Commerce Systems. J. Inf. Secur. 2021, 12, 189–211. [Google Scholar] [CrossRef]
- Zhang, M.; Lin, L.; Chen, Z. Lightweight security scheme for data management in E-commerce platform using dynamic data management using blockchain model. Clust. Comput. 2021, 1–15. [Google Scholar] [CrossRef]
- Shakya, V.; Chatterjee, J.M.; Thakur, R.N. Network Security and Its Impact on Business Strategy: A Case Study on E-Commerce Site Daraz. Com. LBEF Res. J. Sci. Technol. Manag. 2021, 3, 45–60. [Google Scholar]
- Xu, Q.; Wang, G. Cross-Cultural Communication of Regional Images Based on Multimodal Discourse Analysis and Network Security. Mob. Inf. Syst. 2021, 2021, 9956593. [Google Scholar] [CrossRef]
- Iqbal, S. A Study on UAV Operating System Security and Future Research Challenges. In Proceedings of the 2021 IEEE 11th Annual Computing and Communication Workshop and Conference, CCWC 2021, Las Vegas, NV, USA, 27–30 January 2021. [Google Scholar]
- Asif, R.; Ghanem, K.; Irvine, J. Proof-of-PUF Enabled Blockchain: Concurrent Data and Device Security for Internet-of-Energy. Sensors 2021, 21, 28. [Google Scholar] [CrossRef]
- Šarac, M.; Pavlović, N.; Bacanin, N.; Al-Turjman, F.; Adamović, S. Increasing privacy and security by integrating a Blockchain Secure Interface into an IoT Device Security Gateway Architecture. Energy Rep. 2021, 7, 8075–8082. [Google Scholar] [CrossRef]
- Gull, H.; Iqbal, S.Z. Usability evaluation of e-government websites in saudi arabia by cognitive walkthrough. In Design Solutions for User-Centric Information Systems; IGI Global: Hershey, PA, USA, 2017; pp. 297–312. ISBN 9781522519454. [Google Scholar]
- Kim, H.-J.; Han, K.-H.; Shin, S.-S. Hash-based SSDP for IoT Device Security. J. Korea Converg. Soc. 2021, 12, 9–16. [Google Scholar] [CrossRef]
- Patel, J. Secured and Efficient Payment Gateways for eCommerce. Int. J. Res. Publ. Rev. 2021, 2, 575–582. [Google Scholar]
- Williams, M.D. Social commerce and the mobile platform: Payment and security perceptions of potential users. Comput. Hum. Behav. 2021, 115, 105557. [Google Scholar] [CrossRef] [Green Version]
- Mujeeb-ur-Rehman; Lakhan, A.; Hussain, Z.; Khoso, F.H.; Arain, A.A. Cyber Security Intelligence and Ethereum Blockchain Technology for E-commerce. Int. J. Emerg. Trends Eng. Res. 2021, 9, 967–972. [Google Scholar] [CrossRef]
- Sim, J.J.; Loh, S.H.; Wong, K.L.; Choong, C.K. Do We Need Trust Transfer Mechanisms? An M-Commerce Adoption Perspective. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 2241–2262. [Google Scholar] [CrossRef]
- Chiu, W.; Cho, H. E-commerce brand: The effect of perceived brand leadership on consumers’ satisfaction and repurchase intention on e-commerce websites. Asia Pac. J. Mark. Logist. 2019, 33, 1339–1362. [Google Scholar] [CrossRef]
- Saeed, S.; Wahab, F.; Cheema, S.A.; Ashraf, S. Role of usability in e-government and e-commerce portals: An empirical study of Pakistan. Life Sci. J. 2013, 10, 8–13. [Google Scholar]
- Lee, S.; Koubek, R.J. The effects of usability and web design attributes on user preference for e-commerce web sites. Comput. Ind. 2010, 61, 329–341. [Google Scholar] [CrossRef]
- Hasan, L.; Morris, A.; Probets, S. A comparison of usability evaluation methods for evaluating e-commerce websites. Behav. Inf. Technol. 2012, 31, 707–737. [Google Scholar] [CrossRef]
- Gul, H.; Iqbal, S.Z.; Saqib, M. Usability Evaluation of an Educational Website in Saudi Arabia. VAWKUM Trans. Comput. Sci. 2015, 8, 84–92. [Google Scholar] [CrossRef] [Green Version]
- Moores, T.T.; Dhillon, G. Do privacy seals in e-commerce really work? Commun. ACM 2003, 46, 265–271. [Google Scholar] [CrossRef]
- Katsikas, S.K.; Lopez, J.; Pernul, G. Trust, privacy and security in e-business: Requirements and solutions. In Proceedings of the 10th Panhellenic Conference on Informatics, Volos, Greece, 11–13 November 2005. [Google Scholar]
- Saeed, S.; Reddick, C.G. Human-Centered System Design for Electronic Governance; IGI Global: Hershey, PA, USA, 2013. [Google Scholar]
- Basu, A.; Muylle, S. Authentication in E-Commerce Commun. ACM 2003, 46, 159–166. [Google Scholar] [CrossRef]
- Irofti, P.; Pătraşcu, A.; Băltoiu, A. Fraud Detection in Networks. In Enabling AI Applications in Data Science; Springer: Berlin/Heidelberg, Germany, 2021; pp. 517–536. [Google Scholar] [CrossRef]
- Ciocchetti, C.A. E-Commerce and Information Privacy: Privacy Policies as Personal Information Protectors. Am. Bus. Law J. 2007, 44, 55–126. [Google Scholar] [CrossRef]
- Schlaeger, C.; Pernul, G. Authentication and Authorisation Infrastructures in b2c e-Commerce. In Proceedings of the International Conference on Electronic Commerce and Web Technologies, Copenhagen, Denmark, 23–26 August 2005; pp. 306–315. [Google Scholar]
- Choy, L.T. The Strengths and Weaknesses of Research Methodology: Comparison and Complimentary between Qualitative and Quantitative Approaches. IOSR J. Humanit. Soc. Sci. 2014, 19, 99–104. [Google Scholar] [CrossRef]
- Saeed, S.; Bajwa, I.S.; Mahmood, Z. Human Factors in Software Development and Design; IGI Global: Hershey, PA, USA, 2014. [Google Scholar]
Protection Motivation Theory (PMT) Constructs | Factors | Key |
---|---|---|
Perceived Security of the Threat | Consumer Rating (CR) | |
Protection against fraudulent transactions | CR1 | |
Authentication of users by the vendor | CR2 | |
Authentication of the vendor by users | CR3 | |
Secure Communication Channel provision | CR4 | |
Perceived Vulnerability of the Threat | Trustworthiness (TR) | |
Logo of well-known brands presence | TR1 | |
Presence of product pictures | TR2 | |
Presence of privacy seal on the website | TR3 | |
Enabling of the search facility on the website | TR4 | |
Presence of security seal on the website | TR5 | |
Perceived Response Efficacy of Preventive Measures | Credit Card Usage Concerns (CC) | |
Application security perception | CC1 | |
Network deficiency perception | CC2 | |
Operating system security concerns | CC3 | |
Unauthorized transactions concerns | CC4 |
Factors | β Value | Q2 (=1 − SSE/SSO) | Average Variance Extraction (AVE) | Cronbach’s Alpha (α) | Composite Reliability |
---|---|---|---|---|---|
Credit Card Usage Concerns | 0.661 | - | 0.561 | 0.736 | 0.834 |
Trustworthiness | 0.598 | - | 0.617 | 0.844 | 0.889 |
Security and Privacy | - | 0.573 | - | - | - |
Factors | β Value | Q2 (=1 − SSE/SSO) | Average Variance Extraction (AVE) | Cronbach’s Alpha (α) | Composite Reliability |
---|---|---|---|---|---|
Credit Card Usage Concerns | 0.580 | - | 0.775 | 0.854 | 0.912 |
Trustworthiness | 0.597 | - | 0.661 | 0.741 | 0.854 |
Security and Privacy | - | 0.551 | - | - | - |
Factors | β Value | Q2 (=1 − SSE/SSO) | Average Variance Extraction (AVE) | Cronbach’s Alpha (α) | Composite Reliability |
---|---|---|---|---|---|
Credit Card Usage Concerns | 0.506 | - | 0.613 | 0.712 | 0.826 |
Trustworthiness | 0.692 | - | 0.593 | 0.828 | 0.879 |
Security and Privacy | - | 0.592 | - | - | - |
Factors | β Value | Q2 (=1 − SSE/SSO) | Average Variance Extraction (AVE) | Cronbach’s Alpha (α) | Composite Reliability |
---|---|---|---|---|---|
Consumer Rating | 0.606 | - | 0.83 | 0.931 | 0.951 |
Trustworthiness | 0.608 | - | 0.666 | 0.874 | 0.909 |
Security and Privacy | - | 0.653 | - | - | - |
Factors | β Value | Q2 (=1 − SSE/SSO) | Average Variance Extraction (AVE) | Cronbach’s Alpha (α) | Composite Reliability |
---|---|---|---|---|---|
Credit Card Usage Concerns | 0.560 | - | 0.705 | 0.581 | 0.827 |
Trustworthiness | 0.678 | - | 0.582 | 0.82 | 0.874 |
Security and Privacy | - | 0.581 | - | - | - |
Factors | β Value | Q2 (=1 − SSE/SSO) | Average Variance Extraction (AVE) | Cronbach’s Alpha (α) | Composite Reliability |
---|---|---|---|---|---|
Consumer Rating | 0.752 | - | 0.795 | 0.914 | 0.939 |
Trustworthiness | 0.559 | - | 0.578 | 0.816 | 0.872 |
Security and Privacy | - | 0.506 | - | - | - |
Factors | β Value | Q2 (=1 − SSE/SSO) | Average Variance Extraction (AVE) | Cronbach’s Alpha (α) | Composite Reliability |
---|---|---|---|---|---|
Credit Card Usage Concerns | 0.386 | - | 0.574 | 0.625 | 0.801 |
Trustworthiness | 0.835 | - | 0.568 | 0.81 | 0.867 |
Security and Privacy | - | 0.504 | - | - | - |
Application | Against Fraudulent Protection | Authentication of Vendor | Authentication by Customer | Secure Communication |
---|---|---|---|---|
Amazon KSA | - | - | - | - |
CenterPoint | - | - | - | - |
Hunger Station | - | - | - | - |
Namshi | Y | Y | Y | Y |
NOON | - | - | - | - |
OUNAS | Y | Y | Y | Y |
SHEIN | - | - | - | - |
Application | Logo of Brand | Picture of Product | Privacy Seal | Security Seal | Search Facility |
---|---|---|---|---|---|
Amazon KSA | Y | Y | Y | Y | Y |
CenterPoint | - | - | Y | Y | Y |
Hunger station | - | - | - | - | - |
Namshi | Y | Y | Y | Y | Y |
NOON | Y | Y | Y | Y | Y |
OUNAS | - | - | - | - | - |
SHEIN | Y | - | Y | Y | Y |
Application | App_Security | Network Deficiency | OS Security Concern | Unauthorized Transactions |
---|---|---|---|---|
Amazon KSA | Y | - | Y | - |
CenterPoint | Y | Y | Y | - |
Hunger station | Y | Y | Y | - |
Namshi | - | - | - | - |
NOON | - | Y | - | Y |
OUNAS | - | - | - | - |
SHEIN | Y | - | Y | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gull, H.; Saeed, S.; Iqbal, S.Z.; Bamarouf, Y.A.; Alqahtani, M.A.; Alabbad, D.A.; Saqib, M.; Al Qahtani, S.H.; Alamer, A. An Empirical Study of Mobile Commerce and Customers Security Perception in Saudi Arabia. Electronics 2022, 11, 293. https://doi.org/10.3390/electronics11030293
Gull H, Saeed S, Iqbal SZ, Bamarouf YA, Alqahtani MA, Alabbad DA, Saqib M, Al Qahtani SH, Alamer A. An Empirical Study of Mobile Commerce and Customers Security Perception in Saudi Arabia. Electronics. 2022; 11(3):293. https://doi.org/10.3390/electronics11030293
Chicago/Turabian StyleGull, Hina, Saqib Saeed, Sardar Zafar Iqbal, Yasser A. Bamarouf, Mohammed A. Alqahtani, Dina A. Alabbad, Madeeha Saqib, Saeed Hussein Al Qahtani, and Albandary Alamer. 2022. "An Empirical Study of Mobile Commerce and Customers Security Perception in Saudi Arabia" Electronics 11, no. 3: 293. https://doi.org/10.3390/electronics11030293
APA StyleGull, H., Saeed, S., Iqbal, S. Z., Bamarouf, Y. A., Alqahtani, M. A., Alabbad, D. A., Saqib, M., Al Qahtani, S. H., & Alamer, A. (2022). An Empirical Study of Mobile Commerce and Customers Security Perception in Saudi Arabia. Electronics, 11(3), 293. https://doi.org/10.3390/electronics11030293