Development of Voltage Control Algorithm for Improving System Stability in Korean Distribution Grids
Abstract
:1. Introduction
2. Voltage Control Method of a Smart Inverter
3. Conventional Voltage Control Method
3.1. Volt–Var Control (VVC)
3.1.1. Definition of Volt–Var Control
3.1.2. Stability Converging with VVC
3.2. Volt–Watt Control (VWC)
4. Improved Voltage Control Methods
4.1. Voltage Error Compensation (VEC)
4.1.1. Definition of VEC
4.1.2. VEC Curve Parameter Settings
4.2. Voltage Control System (VCS) Model
5. DERMS
5.1. Concept of DERMS
5.2. Decision of Control Values
6. Simulation Results
6.1. Target System
6.2. Simulation Results and Discussion
6.2.1. Comparison of VVC with VEC
6.2.2. Verification of DERMS Effects
- G1 Inverter
- G2 Inverter
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Plan for Implementation of Renewable Energy 3020, South Korea Ministry of Trade, Industry and Energy. Implementation Proposal. 2017. Available online: https://www.motie.go.kr/motie/ne/presse/press2/bbs/bbsView.do?bbs_cd_n=81&bbs_seq_n=159996 (accessed on 17 October 2022).
- Republic of Korea Ministry of Trade, Industry, and Energy. 9th Basic Plan for Electricity Supply and Demand; Biennial Report; Republic of Korea Ministry of Trade, Industry, and Energy: Sejong-si, Korea, 2020.
- Holguin, J.P.; Rodriguez, D.C.; Ramos, G. Reverse Power Flow (RPF) Detection and Impact on Protection Coordination of Distribution Systems. IEEE Trans. Ind. Appl. 2020, 56, 2393–2401. [Google Scholar] [CrossRef]
- Seal, B. Standard Language Protocols for Photovoltaics and Storage Grid Integration: Developing a Common Method for Communicating with Inverter-Based Systems; Technical Update 1020906; EPRI: Palo Alto, CA, USA, 2010. [Google Scholar]
- IEEE Std 1547-2018 (Revision of IEEE Std 1547-2003); IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces. IEEE: Piscataway, NJ, USA, 2018. Available online: https://sagroups.ieee.org/scc21/standards/1547rev/ (accessed on 17 October 2022).
- Jafari, M.; Olowu, T.O.; Sarwat, A.I. Optimal Smart Inverters Volt-VAR Curve Selection with a Multi-Objective Volt-VAR Optimization using Evolutionary Algorithm Approach. In Proceedings of the 2018 North American Power Symposium (NAPS), Fargo, ND, USA, 9–11 September 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Muthukaruppan, V.; Baran, M.E. Implementing a Decentralized Volt/VAR Scheme on a Smart Distribution System. In Proceedings of the 2020 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 17–20 February 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Hossein, Z.S.; Khodaei, A.; Fan, W.; Hossan, S.; Zheng, H.; Fard, S.A.; Paaso, A.; Bahramirad, S. Conservation Voltage Reduction and Volt-VAR Optimization: Measurement and Verification Benchmarking. IEEE Access 2020, 8, 50755–50770. [Google Scholar] [CrossRef]
- Kashani, M.G.; Mobarrez, M.; Bhattacharya, S. Smart Inverter Volt-Watt Control Design in High PV-Penetrated Distribution Systems. IEEE Trans. Ind. Appl. 2019, 55, 1147–1156. [Google Scholar] [CrossRef]
- Parajeles, M.J.; Ramírez, R.; Valverde, G. Use of Smart Inverters for Provision of Voltage Support to Medium and High Voltage Networks. In Proceedings of the 2020 2nd Global Power, Energy and Communication Conference (GPECOM), Ephesus Izmir, Turkey, 20–23 October 2020; pp. 291–296. [Google Scholar] [CrossRef]
- Wang, W.; Shi, X.; Brewster, C.; Huque, A. Oscillation Mechanism and Setting Guideline for Inverter Volt-Var Control. In Proceedings of the 2020 47th IEEE Photovoltaic Specialists Conference (PVSC), New York, NY, USA, 15 June–21 August 2020; pp. 2032–2039. [Google Scholar] [CrossRef]
- Peppanen, J.; Deboever, J.; Coley, S.; Renjit, A. Value of derms for flexible interconnection of solar photovoltaics. In Proceedings of the CIRED 2020 Berlin Workshop (CIRED 2020), Online, 22–23 September 2020; pp. 557–560. [Google Scholar] [CrossRef]
- Memmel, E.; Schlüters, S.; Völker, R.; Schuldt, F.; von Maydell, K.; Agert, C. Forecast of Renewable Curtailment in Distribution Grids Considering Uncertainties. IEEE Access 2021, 9, 60828–60840. [Google Scholar] [CrossRef]
- Mahmoud, K.; Lehtonen, M. Comprehensive Analytical Expressions for Assessing and Maximizing Technical Benefits of Photovoltaics to Distribution Systems. IEEE Trans. Smart Grid 2021, 12, 4938–4949. [Google Scholar] [CrossRef]
- Liu, M.Z.; Procopiou, A.T.; Petrou, K.; Ochoa, L.F.; Langstaff, T.; Harding, J.; Theunissen, J. On the Fairness of PV Curtailment Schemes in Residential Distribution Networks. IEEE Trans. Smart Grid 2020, 11, 4502–4512. [Google Scholar] [CrossRef]
- Liang, Z.; Chen, H.; Wang, X.; Chen, S.; Zhang, C. Risk-Based Uncertainty Set Optimization Method for Energy Management of Hybrid AC/DC Microgrids With Uncertain Renewable Generation. IEEE Trans. Smart Grid 2019, 11, 1526–1542. [Google Scholar] [CrossRef]
- EPRI OpenDSS. Open Distribution System Simulator. Available online: https://sourceforge.net/projects/electricdss (accessed on 17 October 2022).
- KEPCO. Regulations for the Use of Electrical Equipment for Transmission and Distribution, [Attachment 4] Performance Standards for Electric Facilities for Distribution. 2020. Available online: https://cyber.kepco.co.kr/ckepco/front/jsp/CY/H/C/CYHCHP00704.jsp (accessed on 17 October 2022).
- Zhu, H.; Liu, H.J. Fast Local Voltage Control Under Limited Reactive Power: Optimality and Stability Analysis. IEEE Trans. Power Syst. 2015, 31, 3794–3803. [Google Scholar] [CrossRef]
- Gwon, D.-Y.; Choi, Y.-H.; Sim, J.-B. A Study on Voltage Control Method of Smart Inverter using Matlab-OpenDSS Co-Simulation on Distribution Networks. Trans. Korean Inst. Electr. Eng. 2022, 71, 566–573. [Google Scholar] [CrossRef]
- Horst, G.; Seal, B.; Gray, G. Common Functions for DER Group Management. 3002008215, EPRI Project Manager, EPRI. 2016. Available online: https://www.epri.com/research/products/3002008215 (accessed on 17 October 2022).
- Renjit, A. Distributed Energy Resources Management Systems. 3002014467, EPRI Project Manager, EPRI. 2018. Available online: https://www.epri.com/research/products/000000003002014467 (accessed on 17 October 2022).
- Renjit, A. Principles of Access for Flexible Interconnection. 3002018506, EPRI Project Manager, EPRI. 2020. Available online: https://www.epri.com/research/products/000000003002019635 (accessed on 17 October 2022).
- Renjit, A.; Weng, D.; HuBet, T. DERMS Reference Control Methods for DER Group Management. In Proceedings of the CIRED 2019 Conference, Madrid, Spain, 3–6 June 2019. [Google Scholar] [CrossRef]
- Seal, B.; Renjit, A.; Deaver, B. Understanding DERMS; Technical Update 3002013049; EPRI: Palo Alto, CA, USA, 2018. [Google Scholar]
Parameter | Voltage (p.u.) | Parameter | Reactive Power |
---|---|---|---|
−0.06 | |||
−0.01 | 0 | ||
0.01 | 0 | ||
0.06 |
Parts | Function |
---|---|
A | Voltage Control System |
B | OpenDSS engine |
C | Active Power Output Controller |
D | Reactive Power Output Controller |
Distributed Energy Resources | Distributed Generation Capacity | Loads |
---|---|---|
47 | 13,832 kVA | 1199 kVA |
Inverter | DER Capacity | Active Power Maximum Output | Reactive Power Output Range |
---|---|---|---|
G1 | 3500 kVA | 2915 kW | ±1937 kVar |
G2 | 596.4 kVA | 497 kW | ±329.6 kVar |
Case | Scenarios |
---|---|
1 | Base Case (No Control) |
2 | VEC |
3 | VEC and VWC |
4 | VEC and VWC with DERMS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gwon, D.; Choi, Y.; Sim, J. Development of Voltage Control Algorithm for Improving System Stability in Korean Distribution Grids. Electronics 2022, 11, 3661. https://doi.org/10.3390/electronics11223661
Gwon D, Choi Y, Sim J. Development of Voltage Control Algorithm for Improving System Stability in Korean Distribution Grids. Electronics. 2022; 11(22):3661. https://doi.org/10.3390/electronics11223661
Chicago/Turabian StyleGwon, DongYeong, YunHyuk Choi, and JunBo Sim. 2022. "Development of Voltage Control Algorithm for Improving System Stability in Korean Distribution Grids" Electronics 11, no. 22: 3661. https://doi.org/10.3390/electronics11223661
APA StyleGwon, D., Choi, Y., & Sim, J. (2022). Development of Voltage Control Algorithm for Improving System Stability in Korean Distribution Grids. Electronics, 11(22), 3661. https://doi.org/10.3390/electronics11223661