Design of Optical-Wireless IR-UWBoF Systems with Spectral Line Suppression Capabilities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Methodology
2.2. System Model
2.2.1. IR-UWB Transmitter Model
2.2.2. Optical Transmitter Model
2.2.3. Wireless Transmission Model
2.3. Optical-Wireless SLF IR-UWBoF Testbed Implementation
2.3.1. Electrical IR-UWB Signal Generation
2.3.2. Optical IR-UWB Transmission Implementation
2.3.3. Wireless Testbed Implementation
2.3.4. PSD Measurement Hardware
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, I.; Ahmedy, I.; Gani, A.; Munir, M.U.; Anisi, M.H. Data Collection in Studies on Internet of Things (IoT), Wireless Sensor Networks (WSNs), and Sensor Cloud (SC): Similarities and Differences. IEEE Access 2022, 10, 33909–33931. [Google Scholar] [CrossRef]
- Khan, M.Z.; Alhazmi, O.H.; Javed, M.A.; Ghandorh, H.; Aloufi, K.S. Reliable Internet of Things: Challenges and Future Trends. Electronics 2021, 10, 2377. [Google Scholar] [CrossRef]
- Yaqoob, I.; Hashem, I.A.T.; Mehmood, Y.; Gani, A.; Mokhtar, S.; Guizani, S. Enabling Communication Technologies for Smart Cities. IEEE Commun. Mag. 2017, 55, 112–120. [Google Scholar] [CrossRef]
- Deese, A.S.; Jesson, J.; Brennan, T.; Hollain, S.; Stefanacci, P.; Driscoll, E.; Rodriguez, E. Long-Term Monitoring of Smart City Assets via Internet of Things and Low-Power Wide-Area Networks. IEEE Internet Things 2021, 8, 222–231. [Google Scholar] [CrossRef]
- Kuo, Y.W.; Li, C.L.; Jhang, J.H.; Lin, S. Design of a Wireless Sensor Network-Based IoT Platform for Wide Area and Heterogeneous Applications. IEEE Sens. J. 2018, 18, 5187–5197. [Google Scholar] [CrossRef]
- Wang, Q.; Chai, X.; Wang, Y.; Liu, D.; Chen, M.; Li, Y.; Bai, O. A high data rate, multi-nodes wireless personal-area sensor network for real-time data acquisition and control. In Proceedings of the First International Conference on Electronics Instrumentation & Information Systems (EIIS), Harbin, China, 3–5 June 2017. [Google Scholar] [CrossRef]
- Colman-Meixner, C.; Khalili, H.; Antoniou, K.; Siddiqui, M.S.; Papageorgiou, A.; Albanese, A.; Simeonidou, D. Deploying a Novel 5G-Enabled Architecture on City Infrastructure for Ultra-High Definition and Immersive Media Production and Broadcasting. IEEE Trans. Broadcast. 2019, 65, 392–403. [Google Scholar] [CrossRef] [Green Version]
- Angelucci, A.; Aliverti, A. Telemonitoring systems for respiratory patients: Technological aspects. Pulmonology 2020, 26, 221–232. [Google Scholar] [CrossRef]
- Davoli, L.; Belli, L.; Cilfone, A.; Ferrari, G. From Micro to Macro IoT: Challenges and Solutions in the Integration of IEEE 802.15.4/802.11 and Sub-GHz Technologies. IEEE Internet Things 2018, 5, 784–793. [Google Scholar] [CrossRef]
- Shafique, K.; Khawaja, B.A.; Sabir, F.; Qazi, S.; Mustaqim, M. Internet of Things (IoT) for next-generation smart systems: A review of current challenges, future trends and prospects for emerging 5G-IoT scenarios. IEEE Access 2020, 8, 23022–23040. [Google Scholar] [CrossRef]
- Kumar, A.; Shin, K.G.; Choi, Y.J.; Niculescu, D. On time-domain coexistence of unlicensed and licensed spectrum users. In Proceedings of the IEEE International Symposium on Dynamic Spectrum Access Networks, Bellevue, WA, USA, 16–19 October 2012. [Google Scholar] [CrossRef] [Green Version]
- Kosek-Szott, K.; Gozdecki, J.; Loziak, K.; Natkaniec, M.; Prasnal, L.; Szott, S.; Wagrowski, M. Coexistence Issues in Future WiFi Networks. IEEE Netw. 2017, 31, 86–95. [Google Scholar] [CrossRef]
- Natarajan, R.; Zand, P.; Nabi, M. Analysis of coexistence between IEEE 802.15.4, BLE and IEEE 802.11 in the 2.4 GHz ISM band. In Proceedings of the 42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23–26 October 2016. [Google Scholar] [CrossRef]
- Roy, S.; Foerster, J.R.; Somayazulu, V.S.; Leeper, D. G Ultrawideband radio design: The promise of high-speed, short-range wireless connectivity. Proc. IEEE 2004, 92, 295–311. [Google Scholar] [CrossRef] [Green Version]
- Roy, M.; Jamadagni, H.S. Comparative Study of Adaptive Frequency Hopping with Power Control to Avoid WLAN Interference in WPAN Systems like Bluetooth. In Proceedings of the 7th IEEE Consumer Communications and Networking Conference, Las Vegas, NV, USA, 9–12 January 2010. [Google Scholar] [CrossRef]
- Bagula, A.B.; Mehta, A.; Zennaro, M. Experimental evaluation of interference mitigation on the 2.4 GHz ISM band using channel hopping. In Proceedings of the 2010 IFIP Wireless Days, Venice, Italy, 20–22 October 2010. [Google Scholar] [CrossRef]
- Xhafa, A.E.; Yanjun, S. Mechanisms for coexistence of collocated WLAN and Bluetooth in the same device. In Proceedings of the 2013 International Conference on Computing, Networking and Communications (ICNC 2013), San Diego, CA, USA, 28–31 January 2013. [Google Scholar] [CrossRef]
- Yeager, R.; Goverdhanam, K. RF interference mitigation techniques to enable radio communications. In Proceedings of the 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 4–9 June 2017. [Google Scholar] [CrossRef]
- Li, N.; Li, C.; Zhang, B.; Zhang, Y. An interference mitigation MAC protocol for wireless body area network. In Proceedings of the 2017 IEEE/CIC International Conference on Communications in China (ICCC), Qingdao, China, 22–24 October 2017. [Google Scholar] [CrossRef]
- Aijaz, A.; Kulkarni, P. Simultaneous Transmit and Receive Operation in Next Generation IEEE 802.11 WLANs: A MAC Protocol Design Approach. IEEE Wirel. Commun. 2017, 24, 128–135. [Google Scholar] [CrossRef]
- Zhang, J.; Orlik, P.V.; Sahinoglu, Z.; Molisch, A.F.; Kinney, P. UWB Systems for Wireless Sensor Networks. Proc. IEEE 2009, 97, 313–331. [Google Scholar] [CrossRef]
- Ling, R.W.C.; Gupta, A.; Vashistha, A.; Sharma, M.; Law, C.L. High precision UWB-IR indoor positioning system for IoT applications. In Proceedings of the 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore, 5–8 February 2018. [Google Scholar] [CrossRef]
- Taki, H.; Mansour, A.; Azou, S.; Nasser, A.; Yao, K. Pulse parity modulation for impulse radio UWB transmission based on non-coherent detection. Phys. Commun. 2020, 40, 101061. [Google Scholar] [CrossRef]
- Sheng, H.; Orlik, P.; Haimovich, A.M.; Cimini, L.J.; Zhang, J. On the spectral and power requirements for ultra-wideband transmission. In Proceedings of the IEEE International Conference on Communications, Anchorage, AK, USA, 11–15 May 2003. [Google Scholar] [CrossRef]
- Villarreal-Reyes, S.; Edwards, R.M. Analysis techniques for the power spectral density estimation of convolutionally encoded impulse radio UWB signals subject to attenuation and timing Jitter. IEEE Trans. Veh. Technol. 2009, 58, 1355–1374. [Google Scholar] [CrossRef]
- Yang, Z.; Shi, F.; Liang, H. A Portable Traffic Counting, Speed Estimation, and Classification Terminal Using IR-UWB Radar. IEEE Sens. J. 2022, 22, 13365–13374. [Google Scholar] [CrossRef]
- Catherwood, P.A.; McLaughlin, J. Internet of Things-Enabled Hospital Wards: Ultrawideband Doctor-Patient Radio Channels. IEEE Antennas Propag. Mag. 2018, 60, 10–18. [Google Scholar] [CrossRef]
- Chehri, A.; Mouftah, H.T. Internet of Things-integrated IR-UWB technology for healthcare applications. Concurr. Comput. Pract. Exp. 2019, 32, e5454. [Google Scholar] [CrossRef]
- Parsy, D.; Jaouadi, M.Y. Shaping the future of Structural Health Monitoring with IOT sensors. In Proceedings of the International Symposium on Structural Health Monitoring and Nondestructive Testing, Saarbrucken, Germany, 4–5 October 2018. [Google Scholar]
- Choi, J.H.; Kim, J.E.; Kim, K.T. People Counting Using IR-UWB Radar Sensor in a Wide Area. IEEE Internet Things 2021, 8, 5806–5821. [Google Scholar] [CrossRef]
- Li, M.; Zhu, H.; You, S.Z.; Tang, C.Q. UWB-Based Localization System Aided With Inertial Sensor for Underground Coal Mine Applications. IEEE Sens. J. 2020, 20, 6652–6669. [Google Scholar] [CrossRef]
- Zhao, Z.; Xing, W.; Gan, W. Multiple ultra-wideband signal sources exploiting XPM in SFRL. Optoelectron. Lett. 2022, 18, 77–84. [Google Scholar] [CrossRef]
- Anes, B.; Riad, B.A. Simultaneous Distribution of OFDM with IR-UWB Signals using Radio over Fiber. Microw. Rev. 2021, 27, 28–39. [Google Scholar]
- Mirza, J.; Ghafoor, S.; Hussain, A. A full-duplex ultra-wideband over multimode fiber link for Internet of things based smart home applications. Trans. Emerg. Telecommun. Technol. 2020, 31, e4050. [Google Scholar] [CrossRef]
- Shehata, M.; Abotaleb, A.M.; Ali, M.G.; Hameed, M.F.O.; Mostafa, H.; Obayya, S.S. Maximum emission levels of photonically generated impulse radio waveforms under spectral constraints. Optik 2020, 206, 164266. [Google Scholar] [CrossRef]
- Ghafoor, S. Polarization Multiplexing-Based Ultra-Wideband Over Fiber Communication Employing Direct Modulation and Carrier Re-Use. IEEE Commun. Lett. 2019, 23, 1008–1011. [Google Scholar] [CrossRef]
- Taki, H.; Azou, S.; Hamie, A.; Al Housseini, A.; Alaeddine, A.; Sharaiha, A. On phaser-based processing of impulse radio UWB over fiber systems employing SOA. Opt. Fiber Technol. 2017, 36, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Malekizandi, M.; Chipouline, A.; Küppers, F. Bidirectional UWB over fiber for WDM-PON system. Opt. Express 2017, 25, 6840–6850. [Google Scholar] [CrossRef]
- Perez-Ramos, A.E.; Villarreal-Reyes, S.; Lepers, C.; Arvizu, A.; Muller, M.; Abib, G.I. Low complexity M-PPM impulse-radio ultra wideband over fiber system for wireless sensor networks applications. IEEJ Trans. Electr. Electron. Eng. 2015, 10, S162–S164. [Google Scholar] [CrossRef]
- Perez-Ramos, A.E.; Villarreal-Reyes, S.; Arvizu-Mondragon, A.; Lepers, C.; Santos-Aguilar, J. Spectral line suppression capabilities of spectral line free convolutional codes in UWB over fiber systems. Microw. Opt. Technol. Lett. 2014, 56, 1712–1715. [Google Scholar] [CrossRef]
- Abraha, S.T.; Okonkwo, C.; Gamage, P.A.; Tangdiongga, E.; Koonen, T. Routing of power efficient IR-UWB wireless and wired services for inbuilding network applications. J. Light. Technol. 2012, 30, 1651–1663. [Google Scholar] [CrossRef]
- Pham, T.-T.; Yu, X.; Dittmann, L.; Monroy, I.T. Integration of Optically Generated Impulse Radio UWB Signals into Baseband WDM-PON. IEEE Photonics Technol. Lett. 2011, 23, 474–476. [Google Scholar] [CrossRef]
- Pan, S.; Yao, J. IR-UWB-Over-Fiber Systems Compatible with WDM-PON Networks. J. Light. Technol. 2011, 29, 3025–3034. [Google Scholar] [CrossRef]
- Chang, Y.M.; Lee, J.; Lee, H.S.; Yan, L.; Lee, J.H. Generation and Distribution of 1.25 Gb/s Ultrawideband Doublet Pulses Based on the Combination of Nonlinear Polarization Rotation and Parametric Amplification. J. Light. Technol. 2011, 29, 931–938. [Google Scholar] [CrossRef]
- Sakib, M.; Huang, T.; Gross, W.J.; Liboiron-Ladouceur, O. Low-Density Parity-Check Coding in Ultra-Wideband-Over-Fiber Systems. IEEE Photonics Technol. Lett. 2011, 23, 1493–1495. [Google Scholar] [CrossRef]
- Rodes, R.; Yu, X.; Caballero, A.; Jensen, J.B.; Gibbon, T.B.; Gonzalez, N.G.; Monroy, I.T. Range extension and channel capacity increase in impulse-radio ultra-wideband communications. Tsinghua Sci. Technol. 2010, 15, 169–173. [Google Scholar] [CrossRef]
- Pan, S.; Yao, J. A UWB Over Fiber System Compatible With WDM-PON Architecture. IEEE Photonics Technol. Lett. 2010, 22, 1500–1502. [Google Scholar] [CrossRef]
- Chang, Y.M.; Lee, J.; Lee, J.H. Ultrawideband doublet pulse generation based on nonlinear polarization rotation of an elliptically polarized beam and its distribution over a fiber/wireless link. Opt. Express 2010, 18, 20072–20085. [Google Scholar] [CrossRef]
- Gibbon, T.B.; Yu, X.; Gamatham, R.; Gonzalez, N.G.; Rodes, R.; Jensen, J.B.; Monroy, I.T. 3.125 Gb/s Impulse Radio Ultra-Wideband Photonic Generation and Distribution Over a 50 km Fiber With Wireless Transmission. IEEE Microw. Wirel. Compon. Lett. 2010, 20, 127–129. [Google Scholar] [CrossRef]
- Pan, S.; Yao, J. UWB-over-fiber communications: Modulation and transmission. J. Light. Technol. 2010, 28, 2445–2455. [Google Scholar] [CrossRef]
- Pham, T.T.; Yu, X.; Gibbon, T.B.; Dittmann, L.; Monroy, I.T. A WDM-PON-Compatible System for Simultaneous Distribution of Gigabit Baseband and Wireless Ultrawideband Services with Flexible Bandwidth Allocation. IEEE Photonics J. 2010, 3, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Chen, H.; Chen, M.; Xie, S. Gigabit/s photonic generation, modulation, and transmission for a reconfigurable impulse radio UWB over fiber system. IEEE Photonics J. 2010, 4, 805–816. [Google Scholar] [CrossRef]
- Cox, C.; Ackerman, E.; Helkey, R.; Betts, G.E. Direct-detection analog optical links. IEEE Trans. Microw. Theory Tech. 1997, 45, 1375–1383. [Google Scholar] [CrossRef]
- Mitchell, J.E. Radio-Over-Fiber (RoF) Networks in Broadband Access Networks; Springer: Boston, MA, USA, 2009. [Google Scholar]
- Hui, R.; O’Sullivan, M. Fiber Optic Measurements Techniques; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Fu, T.; Zhang, X.; Hraimel, B.; Liu, T.; Shen, D. Mach-Zehnder: A Review of Bias Control Techniques for Mach-Zehnder Modulators in Photonic Analog Links. IEEE Microw. Mag. 2013, 14, 102–107. [Google Scholar] [CrossRef]
- Chaudhary, S.; Binda, P.; Shah, S. An elliptical inset feed patch antenna for UWB applications. In Proceedings of the 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 20–21 May 2016. [Google Scholar] [CrossRef]
- Takada, J.I.; Ishigami, S.; Nakada, J.; Nakagawa, E.; Uchino, M.; Yasui, T. (Measurement techniques of emissions from ultra-wideband devices. IEICE Trans. Fundam. Electron. 2005, 88, 2252–2263. [Google Scholar] [CrossRef]
Ref | Type of Study | Data Rate (Gbps) | Optical Channel (km) | Wireless Channel (cm) | IR-UWB Modulation Scheme | Channel Coding | Spectral Line-Free PSD |
---|---|---|---|---|---|---|---|
[33] | Analytical Simulation | 1.0/5.0 | SMF (60/120) | 0 | BPSK/OOK | FEC | NO |
[34] | Analytical Simulation | 2.0 | GI-MMF (1) | 0 | OOK, PPM, PSM | NO | NO |
[35] | Analytical Experimental | No reported | No reported | 10, 20, 30 | No reported | NO | NO |
[36] | Simulation | 2.0 | SMF (10) | 0 | OOK | NO | NO |
[37] | Simulation | 1.0/0.5 | SMF + SOA (160) | 0 | OOK/PPM | NO | NO |
[38] | Analytical Simulation | 1.25 | SMF (60) | 40 | OOK | NO | NO |
[39] | Analytical Experimental | 0.004 | SMF (30) | 0 | 16-PPM | CC | NO |
[40] | Analytical Experimental | 1.0 | SMF (30) | 0 | BPPM, BPSK, Q-BOPPM | CC | YES SLF-CC |
[42] | Experimental | 1.0 | SMF (23) | 40 | OOK | NO | NO |
[44] | Experimental | 1.25 | NZDSF (20) | 35 | OOK | NO | NO |
[45] | Experimental | 2.5 | SMF (59.2) | 0 | OOK | LPDC | NO |
[46] | Experimental | 2.0 | NZDSF (20) | 800 | OOK | NO | NO |
[47] | Experimental | 0.625 | SMF (20) | 10 | OOK/BPSK | NO | NO |
[48] | Experimental | 1.25 | SMF (25) | 45 | OOK | NO | NO |
[49] | Experimental | 3.125 | SMF (25) + IDF (25) | 310 | OOK | NO | NO |
[50] | Analytical Experimental | 0.625 | SMF (20) | 1,5,10,20 | OOK, BPSK, PSM, PAM | NO | NO |
[52] | Experimental | 1.0 | SMF (20) | 5 | OOK, BPSK | NO | NO |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perez-Ramos, A.-E.; Villarreal-Reyes, S.; Galaviz-Mosqueda, A.; Lepers, C. Design of Optical-Wireless IR-UWBoF Systems with Spectral Line Suppression Capabilities. Electronics 2022, 11, 3496. https://doi.org/10.3390/electronics11213496
Perez-Ramos A-E, Villarreal-Reyes S, Galaviz-Mosqueda A, Lepers C. Design of Optical-Wireless IR-UWBoF Systems with Spectral Line Suppression Capabilities. Electronics. 2022; 11(21):3496. https://doi.org/10.3390/electronics11213496
Chicago/Turabian StylePerez-Ramos, Aldo-Eleazar, Salvador Villarreal-Reyes, Alejandro Galaviz-Mosqueda, and Catherine Lepers. 2022. "Design of Optical-Wireless IR-UWBoF Systems with Spectral Line Suppression Capabilities" Electronics 11, no. 21: 3496. https://doi.org/10.3390/electronics11213496