Deep Residual Vector Encoding for Vein Recognition
Abstract
:1. Introduction
2. Related Work
3. Sparse Dictionary Learning with Deep Residual Descriptors
3.1. Deep Residual Descriptors
3.2. Learning Discriminative Representation with DRVE
4. Experiments and Discussion
4.1. Database and Baseline Model Setup
4.2. Comparison with State-of-the-Art
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Khellat, S.; Abrishambaf, R.; Monteiro, J.; Benyettou, M. Multimodal fusion of the finger vein, fingerprint and the finger-knuckle-print using Kernel Fisher analysis. Appl. Soft Comput. 2016, 42, 439–447. [Google Scholar] [CrossRef]
- Kumar, A.; Zhou, Y. Human identification using finger images. IEEE Trans. Image Process. 2012, 21, 2228–2244. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Lu, Y.; Yoon, S.; Yang, J.; Park, D. Intensity variation normalization for finger vein recognition using guided filter based singe scale retinex. Sensors 2015, 15, 17089–17105. [Google Scholar] [CrossRef] [PubMed]
- Shaheed, K.; Liu, H.; Yang, G.; Qureshi, I.; Gou, J.; Yin, Y. A systematic review of finger vein recognition techniques. Information 2018, 9, 213. [Google Scholar] [CrossRef] [Green Version]
- Jain, T.; Kumar, R. A study of vein recognition system. Acta Inform. Malays. 2019, 3, 13–15. [Google Scholar] [CrossRef]
- Song, J.M.; Kim, W.; Park, K.R. Finger-vein recognition based on deep DenseNet using composite image. IEEE Access 2019, 7, 66845–66863. [Google Scholar] [CrossRef]
- Song, W.; Kim, T.; Kim, H.; Choi, J.; Kong, H.; Lee, S. A finger-vein verification system using mean curvature. Pattern Recognit. Lett. 2011, 32, 1541–1547. [Google Scholar] [CrossRef]
- Miura, N.; Nagasaka, A.; Miyatake, T. Extraction of finger-vein patterns using maximum curvature points in image profiles. IEICE Trans. Inf. Syst. 2007, 90, 1185–1194. [Google Scholar] [CrossRef] [Green Version]
- Mulyono, D.; Jinn, H. A study of finger vein biometric for personal identification. In Proceedings of the International Symposium on Biometrics and Security Technologies, Isalambad, Pakistan, 23–24 April 2008; pp. 1–8. [Google Scholar]
- Hashimoto, J. Finger vein authentication technology and its future. In Proceedings of the 2006 Symposium on VLSI Circuits, Honolulu, HI, USA, 15–17 June 2006; pp. 5–8. [Google Scholar]
- Huang, B.; Dai, Y.; Li, R.; Tang, D.; Li, W. Finger-vein authentication based on wide line detector and pattern normalization. In Proceedings of the 20th International Conference on Pattern Recognition (ICPR), Istanbul, Turkey, 23–26 August 2010; pp. 1269–1272. [Google Scholar]
- Cheong, W.; Prahl, S.; Welch, A. A review of the optical properties of biological tissues. IEEE J. Quantum Electron. 1990, 26, 2166–2185. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.; Park, K. Image restoration of skin scattering and optical blurring for finger vein recognition. Opt. Lasers Eng. 2011, 49, 816–828. [Google Scholar] [CrossRef]
- Yang, Y.; Shi, Y. Towards finger-vein image restoration and enhancement for finger-vein recognition. Inf. Sci. 2014, 268, 33–52. [Google Scholar] [CrossRef]
- Wang, J.; Wang, G.; Li, M.; Yu, W.; Tian, H. An improved hand vein image acquisition method based on the proposed image quality evaluation system. Comput. Model. New Technol. 2014, 18, 1204–1208. [Google Scholar]
- Wang, J.; Wang, G. Quality-Specific Hand Vein Recognition System. IEEE Trans. Inf. Forensics Secur. 2017, 12, 2599–2610. [Google Scholar] [CrossRef]
- Chen, L.; Wang, J.; Yang, S.; He, H. A Finger Vein Image-Based Personal Identification System With Self-Adaptive Illuminance Control. IEEE Trans. Instrum. Meas. 2017, 66, 294–304. [Google Scholar] [CrossRef]
- Abd Rahman, A.B.; Juhim, F.; Bade, A.; Chee, F.P. Effect of NIR LED Power in Enhancing the Vein Acquisition. In Proceedings of the 2021 IEEE 19th Student Conference on Research and Development (SCOReD), Kota Kinabalu, Malaysia, 23–25 November 2021; pp. 456–459. [Google Scholar]
- Lee, E.; Park, K. Restoration method of skin scattering blurred vein image for finger vein recognition. Electron. Lett. 2009, 45, 1074–1076. [Google Scholar] [CrossRef]
- Nguyen, D.; Park, Y.; Shin, K.; Park, K. New Finger-vein Recognition Method Based on Image Quality Assessment. KSII Trans. Internet Inf. Syst. 2013, 7, 347–365. [Google Scholar]
- Yang, L.; Yang, G.; Yin, Y.; Xiao, R. Finger vein image quality evaluation using support vector machines. Opt. Eng. 2013, 52, 27003–27010. [Google Scholar] [CrossRef]
- Nardelli, P.; Jimenez-Carretero, D.; Bermejo-Pelaez, D.; Washko, G.R.; Rahaghi, F.N.; Ledesma-Carbayo, M.J.; Estépar, R.S.J. Pulmonary artery–vein classification in CT images using deep learning. IEEE Trans. Med. Imaging 2018, 37, 2428–2440. [Google Scholar] [CrossRef]
- Sachar, S.; Kumar, A. Survey of feature extraction and classification techniques to identify plant through leaves. Expert Syst. Appl. 2021, 167, 114181. [Google Scholar] [CrossRef]
- Kovač, I.; Marák, P. Finger vein recognition: Utilization of adaptive gabor filters in the enhancement stage combined with SIFT/SURF-based feature extraction. Signal Image Video Process. 2022, 1–7. [Google Scholar] [CrossRef]
- Qin, H.; Qin, L.; Yu, C. Region growth–based feature extraction method for finger-vein recognition. Opt. Eng. 2013, 50, 57208–57213. [Google Scholar] [CrossRef]
- Yang, J.; Yang, J. Combination of Gabor wavelets and circular Gabor filter for finger-vein extraction. In Emerging Intelligent Computing Technology and Applications; Springer: Berlin/Heidelberg, Germany, 2009; pp. 346–354. [Google Scholar]
- Yang, J.; Yang, J.; Shi, Y. Finger-vein segmentation based on multi-channel even-symmetric Gabor filters. In Proceedings of the IEEE International Conference on Intelligent Computing and Intelligent Systems, Shanghai, China, 20–22 November 2009; pp. 500–503. [Google Scholar]
- Wang, G.; Sun, C.; Sowmya, A. Multi-weighted co-occurrence descriptor encoding for vein recognition. IEEE Trans. Inf. Forensics Secur. 2019, 15, 375–390. [Google Scholar] [CrossRef]
- Wang, J.; Wang, G. SIFT Based Vein Recognition Models: Analysis and Improvement. Comput. Math. Methods Med. 2017, 50, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Mulyono, D.; Jinn, H. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Christian, S.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Hariharan, B.; Arbeláez, P.; Girshick, R.; Malik, J. Simultaneous detection and segmentation. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2014; pp. 297–312. [Google Scholar]
- Hong, H.; Lee, M.; Park, K. Convolutional Neural Network-Based Finger-Vein Recognition Using NIR Image Sensors. Sensors 2017, 17, 1297. [Google Scholar] [CrossRef] [Green Version]
- Radzi, S.; Hani, M.; Bakhteri, R. Finger-vein biometric identification using convolutional neural network. Turk. J. Electr. Eng. Comput. Sci. 2016, 24, 1863–1878. [Google Scholar] [CrossRef]
- Qin, H.; El-Yacoubi, M. Deep Representation-Based Feature Extraction and Recovering for Finger-Vein Verification. IEEE Trans. Inf. Forensics Secur. 2017, 12, 1816–1829. [Google Scholar] [CrossRef]
- Ren, H.; Sun, L.; Guo, J.; Han, C.; Wu, F. Finger vein recognition system with template protection based on convolutional neural network. Knowl.-Based Syst. 2021, 227, 107159. [Google Scholar] [CrossRef]
- Hoang, T.; Do, T.; Tan, D.; Cheung, N. Selective Deep Convolutional Features for Image Retrieval. In Proceedings of the ACM International Conference on Multimedia, Mountain View, CA USA, 23–27 October 2017; pp. 1600–1608. [Google Scholar]
- Jou, H.; Douze, M.; Schmid, C.; Pérez, P. Aggregating local descriptors into a compact image representation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA, 13–18 June 2010; pp. 3304–3311. [Google Scholar]
- Perronnin, F.; Sánchez, J.; Mensink, T. Improving the Fisher kernel for large-scale image classification. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2010; pp. 143–156. [Google Scholar]
- Lowe, D. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L. Speeded-up robust features (SURF). Comput. Vis. Image Underst. 2008, 110, 346–359. [Google Scholar] [CrossRef]
- Arandjelović, R.; Zisserman, A. Three things everyone should know to improve object retrieval. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012; pp. 2911–2918. [Google Scholar]
- Morel, J.; Yu, G. ASIFT: A new framework for fully affine invariant image comparison. SIAM J. Imaging Sci. 2009, 2, 438–469. [Google Scholar] [CrossRef] [Green Version]
- Ladoux, P.; Rosenberger, C.; Dorizzi, B. Palm vein verification system based on SIFT matching. In Advances in Biometrics; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1290–1298. [Google Scholar]
- Yuan, L.; Gen, L.; Chao, D.; Jin, H.; Xin, W. Fast recognition of hand vein with SURF descriptors. Chin. J. Sci. Instrum. 2011, 32, 831–836. [Google Scholar]
- Wang, H.; Tao, L.; Hu, X. Novel algorithm for hand vein recognition based on retinex method and SIFT feature analysis. In Electrical Power Systems and Computers; Springer: Berlin/Heidelberg, Germany, 2011; pp. 559–566. [Google Scholar]
- Kim, H.; Lee, E.; Yoon, G.; Yang, S.; Lee, E.; Yoon, S. Illumination normalization for SIFT based finger vein authentication. In International Symposium on Visual Computing; Springer: Berlin/Heidelberg, Germany, 2012; pp. 21–30. [Google Scholar]
- Kang, W.; Liu, Y.; Wu, Q.; Yue, X. Contact-free palm-vein recognition based on local invariant features. PLoS ONE 2014, 9, e97548. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Lee, H.; Park, K. Finger vein recognition using minutia-based alignment and local binary pattern-based feature extraction. Int. J. Imaging Syst. Technol. 2009, 19, 179–186. [Google Scholar] [CrossRef]
- Kang, B.; Park, K.; Yoo, J.; Kim, J. Multimodal biometric method that combines veins, prints, and shape of a finger. Opt. Eng. 2011, 50, 201–209. [Google Scholar]
- Tan, X.; Triggs, B. Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 2010, 19, 1635–1650. [Google Scholar]
- Rosdi, B.; Shing, C.; Suandi, S. Finger vein recognition using local line binary pattern. Sensors 2010, 11, 11357–11371. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Yin, Y.; Yang, G.; Dong, L.; Xi, X. Finger vein recognition with superpixel-based features. In Proceedings of the IEEE International Joint Conference on Biometrics (IJCB), Clearwater, FL, USA, 29 September–2 October 2014; pp. 1–8. [Google Scholar]
- Dong, L.; Yang, G.; Yin, Y.; Liu, F.; Xi, X. Finger vein verification based on a personalized best patches map. In Proceedings of the IEEE International Joint Conference on Biometrics (IJCB), Clearwater, FL, USA, 29 September–2 October 2014; pp. 9–16. [Google Scholar]
- Su, K.; Yang, G.; Yang, L.; Li, D.; Su, P.; Yin, Y. Learning binary hash codes for finger vein image retrieval. Pattern Recognit. Lett. 2019, 117, 74–82. [Google Scholar] [CrossRef]
- Xi, X.; Yang, G.; Yin, Y.; Yang, L. Finger vein recognition based on the hyperinformation feature. Opt. Eng. 2014, 53, 013108. [Google Scholar] [CrossRef]
- Xi, X.; Yang, G.; Yin, Y.; Meng, X. Finger vein recognition with personalized feature selection. Sensors 2013, 13, 11243–11259. [Google Scholar] [CrossRef] [Green Version]
- Turkoglu, M. COVIDetectioNet: COVID-19 diagnosis system based on X-ray images using features selected from pre-learned deep features ensemble. Appl. Intell. 2021, 51, 1213–1226. [Google Scholar] [CrossRef]
- Levenkova, A.; Sowmya, A.; Kalloniatis, M.; Ly, A.; Ho, A. Lesion detection in ultra-wide field retinal images for diabetic retinopathy diagnosis. In Medical Imaging 2018: Computer-Aided Diagnosis; SPIE: Bellingham, WA, USA, 2018; pp. 314–321. [Google Scholar]
- Yang, J.; Yu, K.; Gong, Y.; Huang, T. Linear spatial pyramid matching using sparse coding for image classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, FL, USA, 20–25 June 2009; pp. 1794–1801. [Google Scholar]
- Koniusz, P.; Yan, F.; Gosselin, P.; Mikolajczyk, K. Higher-order occurrence pooling on mid-and low-level features: Visual concept detection. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 313–326. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Wang, J.; Wang, G. Hand-dorsa Vein Recognition with Structure Growing Guided CNN. Opt.-Int. J. Light Electron Opt. 2017, 149, 469–477. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Z.; Zhao, Q.; Zhang, C.; Fan, D. Finger vein recognition based on Gabor filter. In Proceedings of the International Conference on Intelligent Science and Big Data Engineering, Nanjing, China, 18–20 October 2013; pp. 827–834. [Google Scholar]
- Miura, N.; Nagasaka, A.; Miyatake, T. Feature extraction of finger-vein patterns based on repeated line tracking and its application to personal identification. Mach. Vis. Appl. 2004, 15, 194–203. [Google Scholar] [CrossRef]
- Choi, J.; Song, W.; Kim, T.; Lee, S.; Kim, H. Finger vein extraction using gradient normalization and principal curvature. In Image Processing: Machine Vision Applications II; SPIE: Bellingham, WA, USA, 2009; pp. 827–834. [Google Scholar]
- Kang, K. Vein pattern extraction based on vectorgrams of maximal intra-neighbor difference. Pattern Recognit. Lett. 2012, 33, 1916–1923. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Q.; You, J.; Bhattacharya, P. Palm vein extraction and matching for personal authentication. Adv. Vis. Inf. Syst. 2007, 4781, 154–164. [Google Scholar]
VGG | GoogLeNet | ResNet | |
---|---|---|---|
DRVE |
Group | 1 (DT) | 2 (FT) | 3 (OFEx) | 4 (OFEn) | 5 (Proposed) | ||||
---|---|---|---|---|---|---|---|---|---|
Methods | FingerveinNet | AlexNet | AlexNet | VGG | AlexNet | VGG | FV | VLAD | DRVE |
Accuracy (%) | 2.089 | 2.711 | 3.104 | 3.641 | 4.215 | 2.835 | 1.028 | 1.031 | 0.016 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Zhang, T.; Liu, Y.; Long, F. Deep Residual Vector Encoding for Vein Recognition. Electronics 2022, 11, 3300. https://doi.org/10.3390/electronics11203300
Li F, Zhang T, Liu Y, Long F. Deep Residual Vector Encoding for Vein Recognition. Electronics. 2022; 11(20):3300. https://doi.org/10.3390/electronics11203300
Chicago/Turabian StyleLi, Fuqiang, Tongzhuang Zhang, Yong Liu, and Feiqi Long. 2022. "Deep Residual Vector Encoding for Vein Recognition" Electronics 11, no. 20: 3300. https://doi.org/10.3390/electronics11203300
APA StyleLi, F., Zhang, T., Liu, Y., & Long, F. (2022). Deep Residual Vector Encoding for Vein Recognition. Electronics, 11(20), 3300. https://doi.org/10.3390/electronics11203300