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Abstract: Vein recognition has been drawing more attention recently because it is highly secure and
reliable for practical biometric applications. However, underlying issues such as uneven illumination,
low contrast, and sparse patterns with high inter-class similarities make the traditional vein recogni-
tion systems based on hand-engineered features unreliable. Recent successes of convolutional neural
networks (CNNs) for large-scale image recognition tasks motivate us to replace the traditional hand-
engineered features with the superior CNN to design a robust and discriminative vein recognition
system. To address the difficulty of direct training or fine-tuning of a CNN with existing small-scale
vein databases, a new knowledge transfer approach is formulated using pre-trained CNN models
together with a training dataset (e.g., ImageNet) as a robust descriptor generation machine. With
the generated deep residual descriptors, a very discriminative model, namely deep residual vector
encoding (DRVE), is proposed by a hierarchical design of dictionary learning, coding, and classifier
training procedures. Rigorous experiments are conducted with a high-quality hand-dorsa vein
database, and superior recognition results compared with state-of-the-art models fully demonstrate
the effectiveness of the proposed models. An additional experiment with the PolyU multispectral
palmprint database is designed to illustrate the generalization ability.

Keywords: CNN; deep residual descriptors; sparse coding; vein recognition

1. Introduction

Vein pattern, an intrinsic biometric pattern imaged under near-infrared (NIR) light,
has emerged as a promising alternative for person identification. Compared with extrinsic
biometric features such as face, fingerprint, palmprint, and iris, vein patterns including
finger–vein, dorsa–vein, and palm–vein are highly secure, private, and convenient. These
properties are the basic requirements for practical applications and are attracting more
attention [1–5]. Despite the advantages of adopting vein patterns for person identification,
there still exist some inherent issues (e.g., unavoidable environmental illuminations [5–7],
ambient temperature effects [2,7–9], uncontrollable user behaviours [9–11], and NIR device
degradation [12–14]), which make the design of robust and accurate vein recognition
systems a challenging task. To alleviate the inherent influence of these issues, as shown
in Figure 1, researchers [15,16] have proposed different algorithms targeted at a specific
step of the traditional vein recognition framework, such as designing restoration methods
to recover the details, proposing better feature extraction methods, and developing more
robust matching strategies.

Other work [15–18] focuses on the improvement of vein image acquisition. Among
these studies, Wang et al. [15] proposed incorporating a hierarchical vein image quality
assessment index to control the lighting intensity of NIR so as to improve the contrast of
captured vein images. Based on this framework, the accuracy of the index in describing
vein patterns was improved [16] by designing a local image contrast estimator that is
fast to compute and consumes negligible time for image capture. A similar illuminance
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control strategy was proposed [17] by calculating the block intensity, where each block
(vein and non-vein region) is treated equally, thus obtaining over-exposed/under-exposed
vein images with low contrast. Another common problem for works focusing on the image
acquisition step is that such strategies will inevitably shorten the life expectancy of an NIR
system and make it inapplicable for biometric products.
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Figure 1. General framework of hand vein recognition system.

Different from the illuminance control strategies, more effective methods for han-
dling the low-contrast vein pattern encoding and matching problems have been proposed
by designing effective algorithms for vein pattern restoration [13,19], contrast enhance-
ment [20–22], and better feature extraction [23,24]. Following this direction, methods that
introduce contrast enhancement before conducting feature extraction have been researched
and deployed to obtain competitive performance. In the first group, the repeated line
tracking [8] approach was devised to restore the line-like vein structure and match sample-
specific structures for identification. To make up for the unreliable pattern finding results
and information loss with line structure detection, the approach of obtaining the maximum
response along eight directions at the central pixel was proposed [25] to extract the concave
region followed by a region growing method for pattern definition. Gabor based directional
or structure information encoding methods were also proposed for specific vein pattern
restoration and representation, and state-of-the-art recognition results [2,8,25–27] were
obtained. However, the structure information mining and coding methods are sensitive
to noise, illumination variation, and contactless acquisition, making them unreliable for
practical vein recognition systems. Another group strictly follows the procedure shown in
Figure 1, and representative hand-engineered feature models are adopted for designing
robust vein recognition systems. To cope with the inherent difficulty of generating discrimi-
native and robust representation for vein patterns that are shown as low-contrast and sparse
structures with high inter-class similarities [28], scale invariant feature transform (SIFT) [29]
and local binary pattern (LBP) [16] are the most commonly used feature descriptors due
to their robustness and discrimination capabilities. However, some work [16,29] reveals
that the vein recognition performance will be impaired by the contrast enhancement step.
Specifically, the widely adopted contrast enhancement step usually introduces mismatches
in SIFT and increases intra-class dissimilarity in LBP.

More recently, hand-engineered feature representation has been significantly outper-
formed by CNN in almost all domains of image understanding, including object detec-
tion [30], categorization [31], and segmentation [32]. Faced by existing problems on how to
design algorithms that are free of contrast enhancement and are able to generate discrimi-
native representations to handle vein patterns with sparse structures and high inter-class
similarities, researchers have turned to CNN [6,33–36]. Aimed at evaluating the effective-
ness of CNN for vein discrimination tasks, Radzi et al. [34,35] proposed constructing a tiny
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CNN that was trained directly or fine-tuned with finger vein databases. However, due
to the insufficient model training caused by the lack of scale and diversity in the training
dataset, the performance was much lower than that of the state-of-the-art methods [16],
indicating the necessity of proposing new formulations for taking advantage of CNN to
deal with challenging vein recognition tasks.

To discover an improved solution on utilizing powerful CNN for discriminating vein
patterns, the idea of transferring the semantic knowledge encoded by both a pre-trained
CNN and the training dataset (e.g., ImageNet) as the representation of vein patterns is
proposed in this paper as the basis for constructing robust vein recognition systems. As
shown in Figure 2, the pre-trained CNN model together with its training dataset (e.g.,
ImageNet) is utilized to generate a descriptor pool. Subsequently, the vein image is first
processed with the same pre-trained CNN to obtain the 1 × 1000 probability matrix (at
the softmax layer), which serves as the index for calculating the feature selection matrix
by a task-specific thresholding strategy. The K × 4096 sized deep residual descriptors,
which are able to describe the vein pattern in a more discriminative manner by transferring
knowledge from both pre-trained CNN and the ImageNet dataset, are obtained by conduct-
ing subtraction between the output of the fully connected layer from vein images and the
associated reference descriptors, which are calculated with matrix multiplication between
the feature selection matrix and the descriptor pool matrix. The proposed descriptors
are free from the burstiness problem [37] that exists in traditional SIFT features, where
some of the detected keypoints are repeated, thus degrading the discriminative ability of
the descriptors.

(a)

(b)

Figure 2. Overview of the proposed deep residual descriptor generation system. (a) Procedure
of generating descriptors (PGD) from a pre-trained CNN for category K containing M samples.
(b) Procedure of generating a descriptor pool and deep residual descriptor for a given vein sample.

After obtaining the robust and discriminative descriptors by transferring knowledge
from other datasets with pre-trained CNN, high-level descriptor encoding methods [38,39]
are desired for further improving the semantical discriminability of the descriptors. To
achieve this, the deep residual vector encoding (DRVE) model is designed by combining
sparse dictionary learning and coding algorithm with off-the-shelf deep residual descrip-
tors, and state-of-the-art vein recognition results are obtained.
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The remainder of this paper is organized as follows. In Section 2, related vein pattern
encoding methods are reviewed and analyzed. In Section 3, methods for generating the
deep residual descriptors are proposed, followed by introducing the DRVE model. Rigorous
experiments and results analysis are given in Section 4. Finally, the paper concludes with a
discussion about possible future directions in Section 5.

2. Related Work

As discussed earlier, the design of feature extraction algorithms is the most crucial and
challenging aspect of vein recognition as a result of the inherent properties of vein images.
Numerous studies in this area concentrate on creating more reliable and discriminative
feature representations. The most recent methods noted in the literature can be summarized
as follows:

Local invariant feature-based methods: Scale-invariant feature description models
are the most often used hand-engineered feature extraction model for resolving the require-
ment of unconstrained geometric transformation, including SIFT [40] and its variants such
as SURF [41], RootSIFT [42], and ASIFT [43], and the feature vector generation procedures
of these models share the same configuration, including the use of scale-space, followed by
extremal point detection and descriptor generation. Pierre et al. [44] used SIFT for hand
vein description following simple preprocessing, which refers to the denoising and contrast
enhancement procedure. However, it has been argued that preprocessing would result in
vein loss and low contrast distribution, causing great difficulty in generating a sufficient
number of descriptive keypoints. To reduce or remove the negative effects of contrast
enhancement, SIFT or SURF [45–47] features were extracted directly on the input images
without any pre-processing and binarization procedures, resulting in considerable per-
formance improvement. However, the existence of matching pairs between two different
samples usually increases the false acceptance rate (FAR) and equal error rate (EER), and
this is unacceptable for vein recognition. Inspired by conclusions elsewhere [44–47], Kang
et al. [48] attempted to improve SIFT performance through complementary feature fusion
and noisy keypoint removal, as well as DoG-HE (histogram equalization) for improved
contrast enhancement. LBP is used to describe the region distribution of the matching
keypoints during the mismatch removal step, and the mismatching points are deleted using
LBP difference, increasing accuracy overall. The keypoint fusion method’s drawback is that
the detected non-vein keypoints describing the palmprint or other regions tend to increase
the FAR.

Local binary pattern based methods: Despite the robust and discriminative property
of local invariant feature based models, the existence of mismatches [29] due to contrast
enhancement makes the final results unreliable. In addition, the complexity of numerous
descriptor detection and matching methods degrades their efficiency. Aimed at overcoming
such disadvantages, and to take full advantage of local image region based feature ex-
traction models, attention has been paid to local geometrical distribution coding methods,
such as LBP [49], local derivative pattern (LDP) [50], local ternary pattern (LTP) [51], and
local line binary pattern (LLBP) [52]. These approaches’ main goal is to represent the
global gray distribution histogram based on local coding calculation results; however, their
discriminative power is hindered by sparse vein texture distribution and the exclusion of
contrast information from feature coding.

Other task-specific methods: Vein recognition, as a classical image processing and
pattern recognition problem, may be realized by transferring knowledge from systems
established for solving other image recognition tasks, which share some common charac-
teristics with vein structure. Inspired by such ideas, superpixel-based features [53], vein
textons map [54,55], hyperinformation based features [56], and personalized and selected
features [57,58] have been successively introduced for obtaining state-of-the-art recognition
results. Despite high accuracy, the drawbacks of high computation time and uncertainty in
the selection of optimal parameters prevent these methods from being widely used and
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applied in real scenarios and also make it impossible to reproduce the reported results
when applying the algorithms to other vein databases.

Furthermore, we believe that the proposed residual descriptor encoding method may
also be applied to other image recognition tasks realized by defining a pre-trained CNN as
feature extractor (i.e., detecting the diabetic retinopathy lesion subtypes in ultra-wide field
images [59]).

3. Sparse Dictionary Learning with Deep Residual Descriptors

In Figure 2, a systematic diagram describing the procedure of generating the deep
residual descriptors is given. Figure 2a demonstrates the specific procedure of generating
descriptors (PGD) from a pre-trained CNN on some sample images: suppose that there are
M samples for category K (K ∈ {1, . . . , 1000}), a feed-forward operation of convolution and
pooling with a pre-trained CNN is conducted for generating an M× 4096 feature matrix,
on which the column-wise averaging is performed to obtain the final 1× 4096 descriptor
for category K. By performing the simple PGD operations, the descriptor for each category
of a dataset (e.g., 1000 categories for ImageNet) can be obtained and then combined to
form the final descriptor pool, and we obtain the 1000× 4096 descriptor pool with a CNN
pre-trained on the ImageNet dataset. With the generated discriminative descriptor pool, the
deep residual descriptor for one vein image can be constructed in the following manner: by
performing the feed-forward operation with the same pre-trained CNN on the vein image,
the output of the second last fully connected layer is obtained and denoted as DN and is then
transformed to a 1000× 4096 matrix by a ‘copy and concatenate’ operation. At the same
time, the output of the softmax layer is used for generating a feature selection matrix by
thresholding, and the threshold is determined by cross-validation (see Section 4 for details).
The feature selection matrix is then used to select the vein sample-specific descriptors from
the descriptor pool (e.g., selecting R× 4096 descriptors out of the 1000× 4096 descriptor
pool in Figure 2), and such a selection can be interpreted as transferring vein image related
knowledge from a pre-trained CNN and its training dataset to obtain a discriminative
representation for depicting vein patterns, thus alleviating the disadvantage of training a
CNN with a limited dataset. To obtain the deep residual descriptors, the 1000× 4096 sized
descriptor (obtained by ‘copy and concatenate’) of the vein sample is also transformed into
a R× 4096 descriptor by the same feature selection matrix. Finally, the residual descriptor
defined as the representation for the vein sample is obtained by absolute substraction
between the selected R× 4096 descriptor and the R× 4096 vein sample descriptor. Based
on the generated deep residual descriptors, the sparse dictionary coding based model is
formulated to construct the DRVE model, and the issues on defining suitable codebook
generation methods for the proposed residual descriptors are investigated. This step is
followed by the introduction of a linear support vector machine (SVM) for efficient vein
recognition.

Based on the selected robust and discriminative deep residual descriptors, the bag of
features (BoF) model is analyzed and deployed for final feature generation and classification.
Considering that the final descriptors for each sample should be sparse and by setting the
threshold relatively high for generating the feature selection matrix in Stage II, as shown in
Figure 2, an overcomplete dictionary and soft membership indicators [60] are desired for
obtaining good recognition results. Based on theoretical and experimental analyses, sparse
coding methods are capable of handling deep residual descriptors, and the state-of-the-art
performance demonstrates the effectiveness of the proposed DRVE. In addition, by utilizing
the simple multi-class linear SVM, computational efficiency is also improved.

3.1. Deep Residual Descriptors

Driven by the great success of CNN in image understanding tasks, four different
CNN-based vein recognition models are investigated to test their abilities in describing and
discriminating sparse and blurry vein patterns. Unexpected low recognition rate and deep
analyses into the underlying reasons indicate the necessity for deep residual descriptors,
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a more discriminative feature representation method. To take better advantage of its
discriminability, sparse dictionary based high-level encoding and classification methods
are also introduced. In the proposed model, CNN together with its training dataset is
defined as a descriptor generation machine, and the output of the defined machine is a
discriminative feature/descriptor pool.

When feeding a vein image into the pre-trained CNN of the machine, as shown in
Figure 2, the value of the softmax layer output, which indicates the relative similarity of
input to a certain class in the training data, is obtained. Subsequently, by setting a suitable
threshold, the feature selection (FS) matrix can be calculated as given in Equation (1):

FStop-K = [F1, F2, . . . , F1000]

Fi =

{
1 if i ≤ k
0 otherwise

(1)

With the matrix, the deep residual descriptors may be obtained by element-wise matrix
multiplication between FS and the original descriptor pool, as described in Equation (2):

D = (FStop-K)
T [D1, D2, . . . , D1000] (2)

where Di is (
M
∑

j=1
dj

i)/M with dj
i being a 1× 4096-D feature vector from the previous 4096-D

fully-connected layer, and M is the total number of samples in each training category. With
such feature vectors describing one vein image, high-level feature encoding methods with
sparse dictionary learning algorithms are realized for linear SVM training. Note that PCA
is adopted to reduce the dimension of the descriptors from 4096 to 1000.

3.2. Learning Discriminative Representation with DRVE

Considering the difference between the residual descriptors and the traditional SIFT
descriptors, suitable dictionary generation methods by modification to the selected basis
are analyzed.

Let X be a set of deep residual descriptors lying in a D-dimensional feature space,
i.e., X = [X1, . . . , XN ]

T ∈ RN×D. The most widely used codebook optimization model,
the vector quantization (VQ) algorithm [61], is adopted by applying K-means to solve the
following objective function (3):

min
C

N

∑
n=1

min
k=1,...,K

‖Xn − Ck‖2
2 (3)

where C = [C1, . . . , CK]
T is the codebook to be optimized, and ‖ · ‖2

2 represents the `2-norm
of the reconstruction residual matrix. The encoding problem can be solved by updating
Ck with AkC, and A = [A1, . . . , AK]

T represents the reconstruction coefficients. The overall
optimization problem for solving the codebook and coefficients simultaneously can be
realized by re-formulating the objective function (3) as:

min
C,Ak

N

∑
n=1
‖Xn − AkC‖2

2

subject to Card(Ak) = 1, ‖Ak‖1 = 1, Ak � 0, ∀k

(4)

where Card(Ak = 1) requires that only one element of Ak is nonzero, and Ak � 0 restricts
that all elements of Ak are nonnegative; ‖Ak‖1 is the `1-norm operation, which defines the
summation of the absolute value of each element in Ak. Based on these constraints, it can be
concluded that the hard assignment [61] with Card(Ak) = 1 in VQ will undoubtedly result
in a coarse reconstruction with large residual errors, thus degrading the discriminability of
the coefficient representation. When adopting VQ based dictionary generation and coding
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methods for the residual descriptors, the performance will be worsened if N in X is small,
which is the prerequisite to ensure that the generated residual descriptors are separable
without intersection. To fully utilize the discriminability of the proposed deep residual
descriptors, different constraints are added to the dictionary training and representation
learning problems, resulting in functions (5)–(6), with which the off-line dictionary learning
is carried out:

min
C,Ak

1
2

N

∑
n=1
‖Xn − AkC‖2

2 + α
N

∑
n=1
‖Ak‖1

subject to ‖Cj‖2
2 ≤ 1 ∀j ∈ {1, . . . , K}

(5)

where α is a tradeoff parameter between reconstruction error and sparsity constraint, and
the `2-norm on Cj is used to prevent the arbitrarily small values of Ak. After learning
the overcomplete dictionary C [61], a similar model by adding another constraint on the
obtained coefficients is proposed for obtaining the final representation:

min
Ak

1
2
‖Xn − AkC‖2

2 + β1‖Ak‖1 +
β2

2
‖Ak‖2

2 (6)

By optimizing function (6) under the `1 and `2 sparse coding scheme [61], a discrimi-
native and stable representation with the learned dictionary is obtained for later classifier
training and vein recognition.

With effective sparse coding on the constructed deep residual descriptors, robust
and discriminative features are obtained to represent the hand–dorsa vein images, which
show the sparse and high inter-class similarity structure, thus alleviating the demand for
complex kernel-based classifiers for recognition tasks. Following this pipeline, a simple
implementation of linear-SVM [60] is introduced to improve the efficiency of the DRVE
model.

To solve the recognition problem with multiple classes, the one-against-all strategy is
adopted to train multiple binary linear-SVMs. Given the training dataset {(Fi, yi)}L

i=1, yi ∈
Y = {1, . . . , L}, the classifier aims at learning L linear and binary functions {wT

c Fc ∈ Y},
and the label for a certain input F can be predicted by Equation (7):

y = min
c∈Y

wT
c F (7)

The parameters wc of the kernel can be obtained by solving the following uncon-
strained convex function J(wc) with wc as a variable:

min
wc
{J(wc) = ‖wc‖2

2 + C
L

∑
i=1

Ł(wc, yc
i , Fi)} (8)

where yc
i equals 1 if the class label yi is 1, otherwise yi equals −1, and Ł(·) is an improved

hinge loss function defined as:

Ł(wc, yc
i , Fi) = [max(0, wT

c Fyc
i − 1)]2 (9)

The replaced loss function is a differentiable quadratic hinge loss, which enables the
training procedure to be conducted efficiently with a simple gradient-based optimization
method (e.g., LBFGS [60]). In contrast, the original loss function in the traditional SVM is
not differentiable everywhere, thus hampering the utilization of fast gradient methods for
optimization. Such improvement can also be applied to other linear classification tasks for
greatly improving the efficiency.
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4. Experiments and Discussion

As a new approach to utilizing CNN for vein recognition tasks, comprehensive experi-
ments were designed to verify the effectiveness of the proposed models.

4.1. Database and Baseline Model Setup

Dataset setup: Experiments for baseline model setup and performance comparison
were conducted with the hand–dorsa vein database from China University of Mining and
Technology [16], which was constructed with data from 98 females and 102 males with ages
varying from 19 to 62. For each subject, 10 hand–dorsa vein images were acquired in two
specifically set sessions separated by a time interval of more than 10 days, and each time,
5 images were acquired from each subject at the wavelength of 850 nm. The size of each
image is 460 × 680 pixels. Similar to other work [16], the region of interest (ROI) for each
image in this database was extracted and normalized to a size of 224 × 224 pixels. When
carrying out experiments, half of the examples are randomly selected as training data, and
the remaining images are utilized for testing. All results are obtained by repeating the
experiments 10 times with random partitions, and the average recognition rate (RR) or
equal error rate (EER) are recorded for model evaluation.

Parameters setup: As the key parameter to obtain the residual descriptor, the size for
the dimension of the feature selection matrix in Figure 2 was determined by 5-fold cross
validation from {1, . . . , 50} with the training set. After obtaining the dimension R, PCA
was adopted for transforming the R× 4096 descriptors to R× 1000 descriptors for better
dictionary generation. For DRVE, the codebook size was fixed as 512. The setup of other
parameters can be referenced from our implementation.

Baseline model setup: With the availability of the numbers of pre-trained CNN
models (e.g., VGG-16 [62], GoogLeNet [31], and ResNet-128 [63]) for descriptor pool
generation, an experiment on finding out the most appropriate one for DRVE and SRRV
was designed, and three models, including VGG-16 [62], GoogLeNet [31], and ResNet-
128 [63]) pre-trained with ImageNet were involved. Following the training and testing
setups described in the previous section, the average RR with the corresponding standard
deviation were obtained and are shown in Table 1.

Table 1. Recognition rate (%) of DRVE with different pre-trained models.

VGG GoogLeNet ResNet

DRVE 98.83± 1.02 91.25± 0.65 90.41± 0.78

As shown in Table 1, the overall recognition rate using VGG was better than the others
for the DRVE model by a large margin, and the VGG based models were used as the
baseline for comparative experiments. Furthermore, the experimental results also revealed
that the VGG based network structure is more capable of discriminating the sparse vein
structures. This may motivate other research on designing a VGG-like network structure
and training it with a large-scale vein database or fine-tuning to seek the best results with
model training instead of feature extraction from off-line models.

4.2. Comparison with State-of-the-Art

After obtaining the baseline formulations of DRVE, rigorous comparison experiments
were designed to demonstrate the superiority of the proposed model over the current
state-of-the-art. Comparisons were made with CNN-based vein recognition models as
well as hand-engineered feature-based vein recognition models. Following the setup in
most of the existing vein recognition models [16,29,34,35,64], the evaluation metric for
the comparison is the EER rather than the direct RR. The EER is obtained by plotting the
receiver operating characteristics (ROC) curve between the false acceptance rate (FAR) and
the false rejection rate (FRR). After discovering the best parameter setup by cross-validation
with the training dataset, the genuine matching and imposter matching on the testing set
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are conducted with the trained DRVE for obtaining the FAR and FRR, respectively, with
which we obtain the EER, as shown in Table 2 and Figure 3.

Table 2. EER (%) with different pre-trained models; the benchmark performance of the first four
groups are highlighted. Group 1 represents direct training (DT) from scratch; group 2 represents
fine-tuning (FT); group 3 represents off-line feature extractor (OFEx); group 4 represents off-line
feature encoding (OFEn).

Group 1 (DT) 2 (FT) 3 (OFEx) 4 (OFEn) 5 (Proposed)

Methods FingerveinNet AlexNet AlexNet VGG AlexNet VGG FV VLAD DRVE

Accuracy (%) 2.089 2.711 3.104 3.641 4.215 2.835 1.028 1.031 0.016

Figure 3. Comparison of ROC curves between the proposed models and representative hand-
engineered methods including (a) SIFT based models, (b) LBP based models, and (c) geometrical
feature based models.

Comparison with CNN based models: To demonstrate the superiority of the pro-
posed encoding and recognition method over other types of CNN based models on the
hand–dorsa vein dataset, four different kinds of formulations for utilizing CNN for vein
recognition tasks are involved, including training a task-specific network from scratch [64],
pre-trained model fine-tuning [64], direct off-line feature extraction with pre-trained
VGG [31], and the combination of direct feature extraction with high-level feature en-
coding. In the case of training a new model from scratch, the models introduced in [34]
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and [64] were realized. In the case of fine-tuning for the domain in focus (here, the hand–
dorsa vein), again two models were realized for comparison. Apart from one model [64]
that fine-tunes the AlexNet trained with ImageNet, VGG trained with ImageNet was also
fine-tuned, as VGG is the most widely cited model for fine-tuning. In the third case of
using the pre-trained model directly as a feature extractor, structure-growing CNN [64]
and the VGG model were used, and the classifier is set the same as the one used in [64]. In
the fourth case of encoding the directly extracted features, two representative methods [61],
namely, the Fisher vector (FV) and vector of locally aggregated descriptors (VLAD), were
used as the baseline for performance comparison. The last group is the proposed DRVE
model, and only the baseline obtained from Table 1 was selected for comparison. It should
be noted that the proposed vein recognition model was defined as a union but not as
the combination of deep descriptors and feature encoding, with the result being that the
performance of deep residual descriptors and the sparse coding models were not compared
with other similar baseline models. The experimental results of these models with the
hand–dorsa vein database are listed in Table 2.

The following conclusions can be drawn directly from Table 2: (1) When adopting
CNN for vein pattern encoding and recognition, the proposed deep residual descriptor
generation and encoding methods are the best, outperforming the existing four methods by
a large margin ranging from 1.012% to 4.199%; (2) In the method of training a new model
directly with vein database (Group 1), a task-specific structure [64] is probably a better
choice than the generic models (e.g., VGG or ResNet); (3) In the method of fine-tuning
(Group 2), the overall inferior performance compared with other groups indicates that
the strategy of fine-tuning is not preferred when the target images differ greatly from the
original training dataset, especially when the target dataset has a high inter-class similarity;
(4) In the method of utilizing pre-trained CNN as feature extractor (Group 3), acceptable
results confirm the transferability of the pre-trained model.

Further analysis of the experimental results yields: (5) For the feature encoding
models (Group 4), the highest accuracy is achieved when compared with the previous three
methods, which not only confirms the conclusion in (4) but also indicates that direct feature
extraction followed by high-level feature encoding should be the very first step when
adopting pre-trained CNN models for different tasks; (6) As the deep descriptor generation
step is theoretically similar to those in Group 4, the large difference in the final results also
demonstrates the superiority of the proposed feature extraction strategy over the traditional
ones by transferring knowledge from other images to increase the discriminability of the
extracted features. (7) Theoretically, the last three groups are somewhat similar, and the
performance gain between neighbouring groups also shows that incorporating high-level
feature encoding methods on the extracted pre-trained CNN features will greatly improve
the performance. It also indicates that modifying the methods of feature extraction (e.g.,
generating the deep residual descriptors) and feature encoding methods simultaneously
may result in state-of-the-art performance. In addition, the proposed generic approach of
adopting CNN together with the training dataset for deep descriptor generation may also
be applicable to other image classification tasks.

Comparison with hand-engineered feature based models: As shown in [16], hand-
engineered features continue to dominate vein recognition tasks. Following a comparison
of the proposed method with all possible CNN-based frameworks, a performance compari-
son with state-of-the-art hand-engineered features is presented here to demonstrate the
superiority of the proposed DRVE models. Note that only the LBP and SIFT based models
are selected here for comparison, because they are commonly used and capable of dealing
with different kinds of vein databases, and the topology/geometry or task-specific represen-
tation based methods are not generally applicable to different kinds of databases. Statistical
methods (e.g., PCA) are preferably adopted for feature post-processing but not directly for
feature extraction in vein recognition tasks, and they are not included for comparison either.
Specifically, two kinds of representative hand-engineered feature extraction algorithms are
used as references: one is the local invariant feature model, including SIFT [40], SURF [41],
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ASIFT [43], RootSIFT [42], and improved SIFT [29]; this is the best hand-engineered algo-
rithm as it has the advantages of being invariant to rotation, translation, scale uncertainty,
and uniform illumination. The other one is LBP [49] and its variants, including LDP [51],
LTP [51], LLBP [52], and DLBP [16]; because of its efficiency, such a model is widely used
for vein-based identification applications, and it also provides competitive recognition
results. The specific EER results of different models are shown in Figure 3.

Judging from the EER result of identification with the hand–dorsa vein database, it
can be concluded that the proposed deep residual descriptor encoding models perform
better than the local invariant feature (LIF) models with an EER of 0.016%, whereas the
best of LIF is 0.820% with ASIFT and the best of LBPs is 0.058% with DLBP. The new
state-of-the-art vein recognition results fully demonstrate the ability of the proposed model
in discriminating the sparse vein patterns with high inter-class similarity.

Comparison with geometrical feature based models: Vein patterns can be used for
authentication due to differences in topological patterns between images. Driven by this,
a series of feature extraction methods [8,11,65–69] are designed for discriminating vein
patterns by geometrical difference. In this section, four representative methods, including
the maximum curvature (MC) from [8], the wide line detector (WLD) [11], the principal
curvature (PC) [67], and the repeated line tracking (RLT) method from [66], were selected
for performance comparison. The specific EER results of different models are shown in
Figure 3.

As shown in Figure 3, similar to the results from models based on hand-crafted features,
large performance improvements using the proposed model over the other representative
methods were shown as ranging from 1.841% to 3.005% on the hand–dorsa vein dataset.
In addition, by comparing the results in Figure 3, the performance discrepancy between
the best geometrical feature (MEC) and the best hand-crafted feature (DLBP) shows that
geometrical features have limitations, because they can only be used effectively on a limited
number of patterns and are sensitive to small modifications. However, benefiting from the
proposed discriminative knowledge transfer mechanism and the hierarchical descriptor
encoding methods (e.g., the sparse coding in this paper), the proposed model performs
well across different biometrical patterns, as evidenced by the superior results with the
palmprint datasets described in the following section.

5. Conclusions

The main contribution of this paper is a completely new knowledge transfer concept
of defining a pre-trained CNN together with its training dataset (e.g., ImageNet) as a robust
descriptor pool, from which representation knowledge is transferred to enrich the domain-
specific image representation and to increase the final classification results. With the deep
residual descriptor generation mechanism, discriminative representations for describing
the sparse vein patterns with high inter-class similarity were obtained by the proposed
DRVE model, which incorporated the sparse dictionary learning scheme for improving the
semantic properties of the representation. VGG was adopted as the basis for generating
the baseline model, and rigorous comparative experiments with both CNN based models
and other state-of-the-art algorithms demonstrate the representation and generalization
ability of the proposed model. In addition, by realizing different kinds of CNN based vein
recognition baseline models, some conclusions on how to utilize CNN appropriately for
challenging vein recognition tasks were obtained. Furthermore, research on utilizing the
proposed model for other domain-specific image recognition tasks is ongoing.
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