Durability Study of Embroidery Electrode Made of Stainless Steel Blended Yarn
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stainless Steel Blended Yarn
2.2. Preparation of Electrode for Embroidery Fabric
2.3. Fabric Electrode Performance Test
2.3.1. Air Permeability Test
2.3.2. Fuzzing and Pilling Test
2.3.3. Mass Loss Test
2.3.4. Effect of Sweat on Resistance of Fabric Electrode
2.3.5. Embroidery Fabric Electrode Performance Stability Test
3. Results and Discussions
3.1. Air Permeability of Embroidery Fabric Electrode
3.2. Fuzzing and Pilling of Embroidery Fabric Electrode
3.3. Mass Loss of Embroidered Fabric Electrode
3.4. Effect of Sweat on the Embroidered Fabric Electrode
3.5. ECG Monitoring Using Embroidery Electrode
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cho, H.; Lee, J.H. A Study on the Optimal Positions of ECG Electrodes in a Garment for the Design of ECG-Monitoring Clothing for Male. J. Med. Syst. 2015, 39, 95. [Google Scholar] [CrossRef] [PubMed]
- Zetterström, R. Nobel Prize to Willem Einthoven in 1924 for the discovery of the mechanisms underlying the electrocardiogram (ECG). Acta Paediatr. 2009, 98, 1380–1382. [Google Scholar] [CrossRef] [PubMed]
- D’Ascenzi, F.; Sciaccaluga, C.; Cameli, M.; Cecere, A.; Ciccone, M.M.; Di Francesco, S.; Ganau, A.; Imbalzano, E.; Liga, R.; Palermo, P.; et al. When should cardiovascular prevention begin? The importance of antenatal, perinatal and primordial prevention. Eur. J. Prev. Cardiol. 2019, 28, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Şahin, B.; Ilgün, G. Risk factors of deaths related to cardiovascular diseases in World Health Organization (WHO) member countries. Health Soc. Care Community 2020, 30, 73–80. [Google Scholar] [CrossRef]
- Yang, J.G.; Gu, H.Q.; Jian, B.O.; Yang WA, N.G.; Wei, L.I. Regional Variations in Medication Usage for Cardiovascular Diseases at the Community Level in China (PURE-China Study). Biomed. Environ. Sci. 2017, 30, 450–454. [Google Scholar] [CrossRef]
- Soroudi, A.; Hernández, N.; Berglin, L.; Nierstrasz, V. Electrode placement in electrocardiography smart garments: A review. J. Electrocardiol. 2019, 57, 27–30. [Google Scholar] [CrossRef]
- Zaman, S.U.; Tao, X.; Cochrane, C.; Koncar, V. Smart E-Textile Systems: A Review for Healthcare Applications. Electronics 2021, 11, 99. [Google Scholar] [CrossRef]
- Hernández, A.I.; Carrault, G.; Mora, F.; Bardou, A. Overview of carmem: A new dynamic quantitative cardiac model for ECG monitoring and its adaptation to observed signals. Acta Biotheor. 2000, 48, 303–322. [Google Scholar] [CrossRef]
- Yun, M.-H.; Yeon, J.-W.; Hwang, J.; Hong, C.S.; Song, K. A calibration technique for an Ag/AgCl reference electrode utilizing the relationship between the electrical conductivity and the KCl concentration of the internal electrolyte. J. Appl. Electrochem. 2009, 39, 2587–2592. [Google Scholar] [CrossRef]
- Merritt, C.R.; Troy Nagle, H.; Grant, E. Fabric-Based Active Electrode Design and Fabrication for Health Monitoring Clothing. IEEE Trans. Inf. Technol. Biomed. Publ. IEEE Eng. Med. Biol. Soc. 2009, 13, 274–280. [Google Scholar] [CrossRef]
- Popović-Maneski, L.; Ivanovic, M.; Atanasoski, V.; Miletić, M.; Zdolšek, S.; Bojović, B.; Hadzievski, L. Properties of different types of dry electrodes for wearable smart monitoring devices. Biomed. Eng. Biomed. Tech. 2020, 65, 405–415. [Google Scholar] [CrossRef]
- Dong, L.; Xu, C.; Li, Y.; Huang, Z.-H.; Kang, F.; Yang, Q.-H.; Zhao, X. Flexible electrodes and supercapacitors for wearable energy storage: A review by category. J. Mater. Chem. A 2016, 4, 4659–4685. [Google Scholar] [CrossRef]
- Li, X.; Sun, Y. A wearable button-like system for long-term multiple biopotential monitoring using non-contact electrodes. Smart Health 2018, 11, 2–15. [Google Scholar] [CrossRef]
- Saadatnia, Z.; GhaffariMosanenzadeh, S.; Chin, M.M.; Naguib, H.E.; Popovic, M.R. Flexible, Air Dryable, and Fiber Modified Aerogel-Based Wet Electrode for Electrophysiological Monitoring. IEEE Trans. Biomed. Eng. 2020, 68, 1820–1827. [Google Scholar] [CrossRef]
- Yu, Z.; Tang, Y.; Cai, G.; Ren, R.; Tang, D. Paper Electrode-Based Flexible Pressure Sensor for Point-of-Care Immunoassay with Digital Multimeter. Anal. Chem. 2018, 91, 1222–1226. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhao, G.; Wu, M.; Liu, Z.; Xiang, D.; Wu, C.; Cheng, Y.; Wang, H.; Wang, Z.L.; Li, L. Ionogel infiltrated paper as flexible electrode for wearable all-paper based sensors in active and passive modes. Nano Energy 2019, 66, 104161. [Google Scholar] [CrossRef]
- Zhang, J.; Dong, L.; Xu, C.; Hao, J.; Kang, F.; Li, J. Comprehensive approaches to three-dimensional flexible supercapacitor electrodes based on MnO2/carbon nanotube/activated carbon fiber felt. J. Mater. Sci. 2017, 52, 5788–5798. [Google Scholar] [CrossRef]
- Chen, G.; Wang, W.; Lu, X.; Mugaanire, I.T.; Zhang, Y.; Ai, Y.; Zhu, M. Homogeneous intercalated graphene/manganic oxide hybrid fiber elec-trode assembly by non-liquid-crystal spinning for wearable energy storage. Mater. Sci. Technol. 2022, 97, 1–9. [Google Scholar] [CrossRef]
- Frydrysiak, M. Comparison of Textile Resistive Humidity Sensors Made by Sputtering, Printing and Embroidery Techniques. Fibres Text. East. Eur. 2020, 28, 91–96. [Google Scholar] [CrossRef]
- Liu, Z.; Zhai, Y.; Liu, X. Progress on fabric electrodes used in biological signal acquisition. In Proceedings of the Shanghai Textile and Garment Innovation Postgraduate Academic Forum and the 9th International Forum on Textile and Garment Innovation, Shanghai, China, 10–12 July 2015; pp. 163–168. [Google Scholar]
- Pola, T.; Vanhala, J. Textile Electrodes in ECG Measurement. In Proceedings of the 2007 International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP 2007), Melbourne, VIC, Australia, 3–6 December 2007; pp. 635–639. [Google Scholar]
- Zhou, Y.; Ding, X.; Zhang, J.; Duan, Y.; Hu, J.; Yang, X. Fabrication of conductive fabric as textile electrode for ECG monitoring. Fibers Polym. 2014, 15, 2260–2264. [Google Scholar] [CrossRef]
- Qin, T.; Peng, S.; Hao, J.; Wen, Y.; Wang, Z.; Wang, X.; He, D.; Zhang, J.; Hou, J.; Cao, G. Flexible and Wearable All-Solid-State Supercapacitors with Ultrahigh Energy Density Based on a Carbon Fiber Fabric Electrode. Adv. Energy Mater. 2017, 7, 1700409. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, X.; Chen, Y.; Wang, C.; Ma, Y. An environment-friendly route to synthesize reduced graphene oxide as a supercapacitor electrode material. Electrochim. Acta 2012, 69, 364–370. [Google Scholar] [CrossRef]
- Li, Z.; Chu, J.; Yang, C.; Hao, S.; Bissett, M.A.; Kinloch, I.A.; Young, R.J. Effect of functional groups on the agglomeration of graphene in nanocomposites. Compos. Sci. Technol. 2018, 163, 116–122. [Google Scholar] [CrossRef]
- Ankhili, A.; Tao, X.; Cochrane, C.; Koncar, V.; Coulon, D.; Tarlet, J.-M. Ambulatory Evaluation of ECG Signals Obtained Using Washable Textile-Based Electrodes Made with Chemically Modified PEDOT:PSS. Sensors 2019, 19, 416. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Li, X.; Li, X.; Cai, Z.; Ge, F. A flexible carbon electrode based on traditional cotton woven fabrics with excellent capacitance. J. Mater. Sci. 2017, 52, 9773–9779. [Google Scholar] [CrossRef]
- Lv, J.; Zhang, L.; Zhong, Y.; Sui, X.; Wang, B.; Chen, Z.; Feng, X.; Xu, H.; Mao, Z. High-performance polypyrrole coated knitted cotton fabric electrodes for wearable energy storage. Org. Electron. 2019, 74, 59–68. [Google Scholar] [CrossRef]
- Lee, B.-M.; Eom, J.-J.; Baek, G.Y.; Hong, S.-K.; Jeun, J.-P.; Choi, J.-H.; Yun, J.M. Cellulose non-woven fabric-derived porous carbon films as binder-free electrodes for supercapacitors. Cellulose 2019, 26, 4529–4540. [Google Scholar] [CrossRef]
- Liu, H.; Tang, D.; Hu, Y.; Xu, L.; Song, J.; Wang, W.; Cheng, B. The effect of chlorine/argentum atomic ratios on electrochemical behaviors and signal acquisition abilities of embroidered electrodes for bio-potential signal measurement. Appl. Phys. A 2019, 125, 501. [Google Scholar] [CrossRef]
- Hu, Y. Design and Application of Flexible Textile Electrode for Bioelectrical Signal Measurement. Master’s Thesis, Tianjin Polytechnic University, Tianjin, China, 2018. [Google Scholar]
- Yuan, H. Research on Textile-structured Ag-AgCl ECG Electrodes. Master’s Thesis, Xi’an Polytechnic University, Xi’an, China, 2015. [Google Scholar]
- Ding, H.; Sarela, A.; Helmer, R.; Mestrovic, M.; Karunanithi, M. Evaluation of Ambulatory ECG Sensors for a Clinical Trial on Outpatient Cardiac Rehabilitation. In Proceedings of the 2010 IEEE/ICME International Conference on Complex Medical Engineering, Gold Coast, QLD, Australia, 13–15 July 2010; pp. 240–243. [Google Scholar]
- Das, A.; Krishnasamy, J.; Alagirusamy, R.; Basu, A. Analysis of the electromagnetic shielding behavior of stainless steel filament and PET/SS hybrid yarn incorporated conductive woven fabrics. Fibers Polym. 2014, 15, 2423–2427. [Google Scholar] [CrossRef]
- Zhang, H.; Yao, C.; Qin, X. A Visually Observable Copper Ion Adsorption Membrane by Electrospinning Combined with Copper Ion Probe. Fibers Polym. 2021, 22, 1844–1852. [Google Scholar] [CrossRef]
- Daukantienee, V.; Laurinaviciutee, I. The synergism of design and technology for the optimisation of embroidery motifs in clothing. Int. J. Cloth. Sci. Technol. 2013, 2, 350–360. [Google Scholar] [CrossRef]
- Anderson, K.M. Machine Embroidery: Tools, Techniques and Technologies. AATCC Rev. 2005, 5, 27–30. [Google Scholar]
- Mar, P.L.; Van Tuyl, J.S.; Lim, M.J. Basic surface electrocardiogram interpretation for the pharmacist. Am. J. Health Pharm. 2021, 78, 850–861. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cao, J.; Li, H.; Yu, P.; Fan, Y.; Xiao, Y.; Yin, Y.; Zhao, X.; Wang, Z.L.; Zhu, G. Differentiation of Multiple Mechanical Stimuli by a Flexible Sensor Using a Dual-Interdigital-Electrode Layout for Bodily Kinesthetic Identification. ACS Appl. Mater. Interfaces 2021, 13, 26394–26403. [Google Scholar] [CrossRef]
- Cao, J.; Liang, F.; Li, H.; Li, X.; Fan, Y.; Hu, C.; Yu, J.; Xu, J.; Yin, Y.; Li, F.; et al. Ultra-robust stretchable electrode for e-skin: In situ assembly using a nanofiber scaffold and liquid metal to mimic water-to-net interaction. InfoMat 2022, 4, e12302. [Google Scholar] [CrossRef]
Electrode Diameter | Stitch Density | Number | Electrode Shape | Needle Type | Embroidery Threads | Embroidered Material | Machine Model |
---|---|---|---|---|---|---|---|
5.5 cm | 0.2 mm | 2 | circle | Tatami | polyester/steel (70/30) | purified cotton, grammage 270 g/m2 | MYSEW-MRS300A Electronic embroidery machine |
5.5 cm | 0.3 mm | 2 | |||||
5 cm | 0.3 mm | 3 | |||||
3.5 cm | 0.3 mm | 12 |
Performance | Stainless Steel Embroidered Fabric Electrodes (Tatami 0.3 mm) | Ag/AgCl Wet Electrodes |
---|---|---|
appearance | ||
Reusability | reusable | one-time |
Permeability | <100 mm/s | N/a |
Reacts with human sweat | Yes. | No. |
Wear resistance | Level one | N/a |
The degree of fit to the skin | 100% | 100% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Xiao, X.; Wang, A.; Jiang, Y. Durability Study of Embroidery Electrode Made of Stainless Steel Blended Yarn. Electronics 2022, 11, 3266. https://doi.org/10.3390/electronics11203266
Wang T, Xiao X, Wang A, Jiang Y. Durability Study of Embroidery Electrode Made of Stainless Steel Blended Yarn. Electronics. 2022; 11(20):3266. https://doi.org/10.3390/electronics11203266
Chicago/Turabian StyleWang, Tianyu, Xueliang Xiao, Ao Wang, and Yun Jiang. 2022. "Durability Study of Embroidery Electrode Made of Stainless Steel Blended Yarn" Electronics 11, no. 20: 3266. https://doi.org/10.3390/electronics11203266
APA StyleWang, T., Xiao, X., Wang, A., & Jiang, Y. (2022). Durability Study of Embroidery Electrode Made of Stainless Steel Blended Yarn. Electronics, 11(20), 3266. https://doi.org/10.3390/electronics11203266