FirecovNet: A Novel, Lightweight, and Fast Deep Learning-Based Network for Detecting COVID-19 Patients Using Chest X-rays
Abstract
:1. Introduction
- Designing a CNN model called FirecovNet to detect COVID-19 in 4-class and 5-class classification.
- Developing an end-to-end network requires neither feature extraction nor feature selection.
- Integration of DarkNet and SqueezeNet networks features for reducing feature dimensions, increasing stability, and increasing detection speed and accuracy.
- Evaluating the proposed network and comparing it with eight transfer learning networks in terms of speed, accuracy, and model size.
- Using 4000 images that were not used in the training process to test and evaluate FirecovNet.
2. Related Works
3. Materials and Methods
3.1. X-ray Image Dataset
3.2. FirecovNet
3.3. Network Implementation and Training Process
3.4. Metrics
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- SARS-CoV-2 Variant Classifications and Definitions. Available online: https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-classifications.html (accessed on 3 August 2022).
- Coronavirus. Available online: https://www.who.int/health-topics/coronavirus#tab=tab_3 (accessed on 3 August 2022).
- Ritchie, H.; Mathieu, E.; Rodés-Guirao, L.; Appel, C.; Giattino, C.; Ortiz-Ospina, E.; Hasell, J.; Macdonald, B.; Beltekian, D.; Roser, M. Coronavirus Pandemic (COVID-19). Our World in Data. Available online: https://ourworldindata.org/coronavirus (accessed on 3 August 2022).
- WHO. WHO Lists Two COVID-19 Tests for Emergency Use; Word Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Tahamtan, A.; Ardebili, A. Real-Time RT-PCR in COVID-19 Detection: Issues Affecting the Results. Expert Rev. Mol. Diagn. 2020, 20, 453–454. [Google Scholar] [CrossRef] [PubMed]
- WHO. Advice on the Use of Point-of-Care Immunodiagnostic Tests for COVID-19; WHO Coronavirus Disease (COVID-19) Pandemic; WHO: Geneva, Switzerland, 2020; pp. 1–6. [Google Scholar]
- Karthik, R.; Menaka, R.; Hariharan, M. Learning Distinctive Filters for COVID-19 Detection from Chest X-ray Using Shuffled Residual CNN. Appl. Soft Comput. J. 2020, 99, 106744. [Google Scholar] [CrossRef] [PubMed]
- Butt, C.; Gill, J.; Chun, D.; Babu, B.A. Retracted article: Deep Learning System to Screen Coronavirus Disease 2019 Pneumonia. Appl. Intell. 2020. epub ahead of print. [Google Scholar] [CrossRef]
- Ai, T.; Yang, Z.; Hou, H.; Zhan, C.; Chen, C.; Lv, W.; Tao, Q.; Sun, Z.; Xia, L. Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology 2020, 296, E32–E40. [Google Scholar] [CrossRef] [PubMed]
- Kanne, J.P.; Little, B.P.; Chung, J.H.; Elicker, B.M.; Ketai, L.H. Essentials for Radiologists on COVID-19: An Update-Radiology Scientific Expert Panel. Radiology 2020, 296, E113–E114. [Google Scholar] [CrossRef]
- Wang, L.; Lin, Z.Q.; Wong, A. COVID-Net: A Tailored Deep Convolutional Neural Network Design for Detection of COVID-19 Cases from Chest X-ray Images. Sci. Rep. 2020, 10, 19549. [Google Scholar] [CrossRef]
- Lin, E.C. Radiation Risk from Medical Imaging. Mayo Clin. Proc. 2010, 85, 1142–1146. [Google Scholar] [CrossRef]
- Shen, D.; Wu, G.; Suk, H.-I. Deep Learning in Medical Image Analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019. [Google Scholar] [CrossRef]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016. [Google Scholar] [CrossRef]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv Prepr. 2017, arXiv:1704.04861. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv Prepr. 2014, arXiv:1409.1556. [Google Scholar] [CrossRef]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar] [CrossRef]
- Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-Level Accuracy with 50× Fewer Parameters and <0.5 MB model size. arXiv Prepr. 2016, arXiv:1602.07360. [Google Scholar] [CrossRef]
- Zebin, T.; Rezvy, S. COVID-19 Detection and Disease Progression Visualization: Deep Learning on Chest X-rays for Classification and Coarse Localization. Appl. Intell. 2021, 51, 1010–1021. [Google Scholar] [CrossRef] [PubMed]
- Ucar, F.; Korkmaz, D. COVIDiagnosis-Net: Deep Bayes-SqueezeNet Based Diagnosis of the Coronavirus Disease 2019 (COVID-19) from X-ray Images. Med. Hypotheses 2020, 140, 109761. [Google Scholar] [CrossRef]
- Marques, G.; Agarwal, D.; de la Torre Díez, I. Automated Medical Diagnosis of COVID-19 through EfficientNet Convolutional Neural Network. Appl. Soft Comput. J. 2020, 96, 106691. [Google Scholar] [CrossRef]
- Chowdhury, N.K.; Rahman, M.M.; Kabir, M.A. PDCOVIDNet: A Parallel-Dilated Convolutional Neural Network Architecture for Detecting COVID-19 from Chest X-ray Images. Health Inf. Sci. Syst. 2020, 8, 27. [Google Scholar] [CrossRef]
- Nour, M.; Cömert, Z.; Polat, K. A Novel Medical Diagnosis Model for COVID-19 Infection Detection Based on Deep Features and Bayesian Optimization. Appl. Soft Comput. J. 2020, 97, 106580. [Google Scholar] [CrossRef]
- Mahmud, T.; Rahman, M.A.; Fattah, S.A. CovXNet: A Multi-Dilation Convolutional Neural Network for Automatic COVID-19 and Other Pneumonia Detection from Chest X-ray Images with Transferable Multi-Receptive Feature Optimization. Comput. Biol. Med. 2020, 122, 103869. [Google Scholar] [CrossRef]
- Aslan, M.F.; Unlersen, M.F.; Sabanci, K.; Durdu, A. CNN-Based Transfer Learning–BiLSTM Network: A Novel Approach for COVID-19 Infection Detection. Appl. Soft Comput. 2020, 98, 106912. [Google Scholar] [CrossRef]
- Gupta, A.; Anjum; Gupta, S.; Katarya, R. InstaCovNet-19: A Deep Learning Classification Model for the Detection of COVID-19 Patients Using Chest X-ray. Appl. Soft Comput. 2020, 99, 106859. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, T.; Talo, M.; Yildirim, E.A.; Baloglu, U.B.; Yildirim, O.; Rajendra Acharya, U. Automated Detection of COVID-19 Cases Using Deep Neural Networks with X-ray Images. Comput. Biol. Med. 2020, 121, 103792. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.I.; Shah, J.L.; Bhat, M.M. CoroNet: A Deep Neural Network for Detection and Diagnosis of COVID-19 from Chest X-ray Images. Comput. Methods Programs Biomed. 2020, 196, 105581. [Google Scholar] [CrossRef] [PubMed]
- Hussain, E.; Hasan, M.; Rahman, M.A.; Lee, I.; Tamanna, T.; Parvez, M.Z. CoroDet: A Deep Learning Based Classification for COVID-19 Detection Using Chest X-ray Images. Chaos Solitons Fractals 2021, 142, 110495. [Google Scholar] [CrossRef] [PubMed]
- Siddhartha, M.; Santra, A. COVIDLite: A Depth-Wise Separable Deep Neural Network with White Balance and CLAHE for Detection of COVID-19. arXiv Prepr. 2020, arXiv:2006.13873. [Google Scholar] [CrossRef]
- Muhammad, U.; Hoque, M.Z.; Oussalah, M.; Keskinarkaus, A.; Seppänen, T.; Sarder, P. SAM: Self-Augmentation Mechanism for COVID-19 Detection Using Chest X-ray Images. Knowl.-Based Syst. 2022, 241, 108207. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.-L.; Liao, Y.-C. A Lightweight CNN-Based Network on COVID-19 Detection Using X-ray and CT Images. Comput. Biol. Med. 2022, 146, 105604. [Google Scholar] [CrossRef] [PubMed]
- Sheykhivand, S.; Mousavi, Z.; Mojtahedi, S.; Yousefi Rezaii, T.; Farzamnia, A.; Meshgini, S.; Saad, I. Developing an Efficient Deep Neural Network for Automatic Detection of COVID-19 Using Chest X-ray Images. Alex. Eng. J. 2021, 60, 2885–2903. [Google Scholar] [CrossRef]
- Islam, M.K.; Habiba, S.U.; Khan, T.A.; Tasnim, F. COV-RadNet: A Deep Convolutional Neural Network for Automatic Detection of COVID-19 from Chest X-rays and CT Scans. Comput. Methods Programs Biomed. Update 2022, 2, 100064. [Google Scholar] [CrossRef]
- Karaddi, S.H.; Sharma, L.D. Automated Multi-Class Classification of Lung Diseases from CXR-Images Using Pre-Trained Convolutional Neural Networks. Expert Syst. Appl. 2022, 211, 118650. [Google Scholar] [CrossRef]
- COVID-19 Radiography Database|Kaggle. Available online: https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database (accessed on 1 August 2022).
- Chest X-ray Images (Pneumonia). Available online: https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia (accessed on 1 August 2022).
- Wan, J.; Wang, D.; Hoi, S.C.H.; Wu, P.; Zhu, J.; Zhang, Y.; Li, J. Deep Learning for Content-Based Image Retrieval: A Comprehensive Study. In Proceedings of the MM 2014—Proceedings of the 2014 ACM Conference on Multimedia, Orlando, FL, USA, 3–7 November 2014; pp. 157–166. [Google Scholar]
- Iandola, F.N.; Moskewicz, M.W.; Ashraf, K.; Han, S.; Dally, W.J.; Keutzer, K. SqueezeNet. arXiv 2016, arXiv:1602.07360. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. Arxiv E-Prints 2015, arXiv:1502.03167. [Google Scholar]
- Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier Nonlinearities Improve Neural Network Acoustic Models. In Proceedings of the ICML 2013, Atlanta, GA, USA, 16–21 June 2013; Volume 30, p. 3. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on Imagenet Classification. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 11–18 December 2015; pp. 1026–1034. [Google Scholar]
- Lin, M.; Chen, Q.; Yan, S. Network In Network. arXiv Prepr. 2013, arXiv:1312.4400. [Google Scholar]
- Guo, Y.; Xia, Y.; Wang, J.; Yu, H.; Chen, R.C. Real-Time Facial Affective Computing on Mobile Devices. Sensors 2020, 20, 870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv Prepr. 2014, arXiv:1412.6980. [Google Scholar]
Layer Name/Type | Output Size | Filter Size | |||
---|---|---|---|---|---|
Input image | 224 × 224 × 3 | - | - | - | - |
Convolutional | 224 × 224 × 8 | 3 × 3 | - | - | - |
Max pool | 112 × 112 × 8 | 2 × 2 | - | - | - |
Convolutional | 112 × 112 × 16 | 3 × 3 | - | - | - |
Max pool | 56 × 56 × 16 | 2 × 2 | |||
Fire | 56 × 56 × 64 | - | 8 | 32 | 32 |
Convolutional | 56 × 56 × 32 | 3 × 3 | - | - | - |
Max pool | 28 × 28 × 32 | 2 × 2 | - | - | - |
Fire | 28 × 28 × 128 | - | 16 | 64 | 64 |
Convolutional | 28 × 28 × 64 | 3 × 3 | - | - | - |
Max pool | 14 × 14 × 64 | 2 × 2 | - | - | - |
Fire | 14 × 14 × 256 | - | 32 | 128 | 128 |
Convolutional | 14 × 14 × 128 | 3 × 3 | - | - | - |
Max pool | 7 × 7 × 128 | 2 × 2 | - | - | - |
Fire | 7 × 7 × 512 | - | 64 | 256 | 256 |
Convolutional | 7 × 7 × N | 1 × 1 | - | - | - |
Average pool | 1 × 1 × N | Global | - | - | - |
Softmax | N | - | - | - | - |
Task | Trainable Parameters | Non-Trainable Parameters | Total Parameters |
---|---|---|---|
4-class classification | 625,648 | 2664 | 622,984 |
5-class classification | 626,175 | 2666 | 623,509 |
No. of Class | Task | Classification Task |
---|---|---|
4 | BCNV | Bacterial pneumonia vs. COVID-19 vs. normal vs. viral pneumonia |
BCLN | Bacterial pneumonia vs. COVID-19 vs. lung opacity vs. normal | |
BCLV | Bacterial pneumonia vs. COVID-19 vs. lung opacity vs. viral pneumonia | |
CLNV | COVID-19 vs. lung opacity vs. normal vs. viral pneumonia | |
5 | BCLNV | Bacterial pneumonia vs. COVID-19 vs. lung opacity vs. normal vs. viral pneumonia |
Task Types | Folds | Metrics | |||
---|---|---|---|---|---|
Accuracy (%) | Precision (%) | Sensitivity (%) | F1-Score (%) | ||
BCNV | 1 | 97.49 | 97.56 | 97.56 | 97.55 |
2 | 97.67 | 97.63 | 97.66 | 97.64 | |
3 | 97.76 | 97.82 | 97.86 | 97.82 | |
4 | 97.86 | 97.81 | 97.76 | 97.78 | |
5 | 98.23 | 98.22 | 98.25 | 98.23 | |
Average | 97.80 ± 0.24 | 97.8 ± 0.22 | 97.81 ± 0.23 | 97.80 ± 0.23 | |
BCLN | 1 | 97.02 | 97.24 | 97.03 | 97.02 |
2 | 97.02 | 96.89 | 97.06 | 96.96 | |
3 | 98.32 | 98.33 | 98.33 | 98.33 | |
4 | 97.49 | 97.5 | 97.52 | 97.5 | |
5 | 97.39 | 97.39 | 97.39 | 97.39 | |
Average | 97.45 ± 0.47 | 97.47 ± 0.47 | 97.46 ± 0.47 | 97.44 ± 0.49 | |
BCLV | 1 | 98.51 | 98.52 | 98.54 | 98.54 |
2 | 98.97 | 98.97 | 98.93 | 98.95 | |
3 | 98.51 | 98.56 | 98.56 | 98.56 | |
4 | 98.42 | 98.42 | 98.36 | 98.38 | |
5 | 98.79 | 98.77 | 98.76 | 98.77 | |
Average | 98.64 ± 0.2 | 98.64 ± 0.19 | 98.63 ± 0.19 | 98.64 ± 0.19 | |
CLNV | 1 | 96.37 | 96.29 | 96.44 | 96.35 |
2 | 94.79 | 94.82 | 94.69 | 94.73 | |
3 | 95.81 | 95.77 | 95.89 | 95.82 | |
4 | 96.09 | 96.05 | 96.1 | 96.06 | |
5 | 96.56 | 96.57 | 96.59 | 96.56 | |
Average | 95.92 ± 0.62 | 95.9 ± 0.6 | 95.94 ± 0.67 | 95.9 ± 0.63 |
Task Types | Folds | Metrics | |||
---|---|---|---|---|---|
Accuracy (%) | Precision (%) | Sensitivity (%) | F1-Score (%) | ||
BCNLV | 1 | 96.80 | 96.89 | 96.89 | 96.87 |
2 | 96.80 | 96.83 | 96.86 | 96.84 | |
3 | 96.50 | 96.41 | 96.45 | 96.42 | |
4 | 97.32 | 97.35 | 97.29 | 97.31 | |
5 | 97.39 | 97.37 | 97.39 | 97.38 | |
Average | 96.96 ± 0.34 | 96.97 ± 0.35 | 96.97 ± 0.11 | 96.96 ± 0.35 |
Task | Train (for Each Epoch) | Test (for All of the Test Data) |
---|---|---|
BCNV | 22 s | 2 s |
BCLN | 22 s | 2 s |
BCLV | 21 s | 2 s |
CLNV | 21 s | 2 s |
BCLNV | 27 s | 3 s |
Network | Model Size (MB) | Parameters (Millions) |
---|---|---|
EfficientNetB0 | 53.9 | 4.68 |
InceptionV3 | 263 | 22.45 |
MobileNet | 41.9 | 3.64 |
ResNet50 | 288 | 24.6 |
VGG16 | 174 | 14.92 |
VGG19 | 236 | 20.23 |
Xception | 256 | 21.6 |
SqueezeNet | 8.9 | 0.74 |
FirecovNet | 7.4 | 0.62 |
Ref. | No. of Classes | Accuracy (%) | Sensitivity (%) |
---|---|---|---|
[11] | 3 | 93.3 | 93.33 |
[22] | 3 | 98.26 | 98.26 |
[23] | 2 | 99.62 | 99.63 |
3 | 96.70 | 96.69 | |
[24] | 3 | 96.58 | 96.59 |
[25] | 3 | 98.97 | 89.39 |
[26] | 3 | 89.6 | 90.3 |
4 | 90.2 | 89.9 | |
[27] | 3 | 98.7 | 98.76 |
[28] | 2 | 99.52 | 99.5 |
3 | 99.08 | 99.08 | |
[29] | 2 | 98.08 | 95.13 |
3 | 87.02 | 85.35 | |
[30] | 2 | 99 | 99.3 |
3 | 95 | 96.9 | |
4 | 89.6 | 89.92 | |
[31] | 2 | 99.1 | 95.36 |
3 | 94.2 | 92.76 | |
4 | 91.2 | 91.76 | |
[32] | 2 | 99.58 | 99.58 |
3 | 96.43 | 96 | |
[33] | 3 | 97.26 | 99.93 |
5 | 84.64 | 82.19 | |
[35] | 4 | 91.8 | 91 |
[36] | 4 | 97 | 96 |
FirecovNet | 4 (BCNV) | 97.8 | 97.8 |
4 (BCLN) | 97.46 | 97.46 | |
4 (BCLV) | 98.64 | 98.63 | |
4 (CLNV) | 95.92 | 95.94 | |
5 | 96.96 | 96.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassanlou, L.; Meshgini, S.; Afrouzian, R.; Farzamnia, A.; Moung, E.G. FirecovNet: A Novel, Lightweight, and Fast Deep Learning-Based Network for Detecting COVID-19 Patients Using Chest X-rays. Electronics 2022, 11, 3068. https://doi.org/10.3390/electronics11193068
Hassanlou L, Meshgini S, Afrouzian R, Farzamnia A, Moung EG. FirecovNet: A Novel, Lightweight, and Fast Deep Learning-Based Network for Detecting COVID-19 Patients Using Chest X-rays. Electronics. 2022; 11(19):3068. https://doi.org/10.3390/electronics11193068
Chicago/Turabian StyleHassanlou, Leila, Saeed Meshgini, Reza Afrouzian, Ali Farzamnia, and Ervin Gubin Moung. 2022. "FirecovNet: A Novel, Lightweight, and Fast Deep Learning-Based Network for Detecting COVID-19 Patients Using Chest X-rays" Electronics 11, no. 19: 3068. https://doi.org/10.3390/electronics11193068
APA StyleHassanlou, L., Meshgini, S., Afrouzian, R., Farzamnia, A., & Moung, E. G. (2022). FirecovNet: A Novel, Lightweight, and Fast Deep Learning-Based Network for Detecting COVID-19 Patients Using Chest X-rays. Electronics, 11(19), 3068. https://doi.org/10.3390/electronics11193068