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Abstract: At the end of 2019, a new virus (SARS-CoV-2) called COVID-19 was reported in Wuhan,
China, and spread rapidly worldwide. After two years later, several variants of this virus were created,
infecting 608 million people and causing 6.51 million deaths. Due to the insufficient sensitivity of
RT-PCR test kits, one of the main tools for detecting the virus, chest X-ray images are a popular tool
for diagnosing the virus in patients with respiratory symptoms. Models based on deep learning
are showing promising results in combating this pandemic. A novel convolutional neural network,
FirecovNet, is suggested in this study that detects COVID-19 infection automatically based on raw
chest X-ray images. With an architecture inspired by the integration of DarkNet and SqueezeNet
networks, the proposed model has fewer parameters than state-of-the-art models and is trained using
COVID-19, bacterial pneumonia, normal, lung opacity, and viral pneumonia images, which were
collected from two public datasets and also are symmetric in the distribution in class. FirecovNet
performance has been verified using the stratified 5-fold cross-validation method. A total of five
classification tasks are performed, including four 4-class classifications, and one 5-class classification,
and the accuracy of all tasks was at least 95.9%. For all classification tasks, the proposed network
has demonstrated promising results in precision, sensitivity, and F1-score. Moreover, a comparison
was made between the proposed network and eight deep transfer learning networks and in terms of
accuracy, precision, sensitivity, F1-score, speed, and size of the saved model; FirecovNet was very
promising. Therefore, FirecovNet can be useful as a tool for more accurate diagnosis of the COVID-19
virus, along with diagnostic tests, in situations where the number of specialist radiologists may
be limited.

Keywords: coronavirus; COVID-19; chest X-rays; deep learning; viral pneumonia bacterial pneumo-
nia; lung opacity; convolutional neural network; FirecovNet

1. Introduction

Since December 2019, a deadly virus of the coronavirus family called COVID-19 has
appeared in Wuhan, Hubei Province, China. The World Health Organization (WHO)
has declared the disease a pandemic. It should be noted that, since the beginning of the
pandemic, several COVID-19 variants have been identified, for instance, Alpha (B.1.1.7),
Delta (B.1.617.2), and Omicron (B.1.1.529) that was first reported to WHO from South
Africa on 24 November 2021. This variant spreads more rapidly than other variants and is
considered a variant of concern [1]. The common symptoms of COVID-19 variants are fever,
shortness of breath, fatigue, cough, and loss of sense of taste and smell [2], and it is mainly
spread through droplets when sneezing, coughing, or even talking. Since the onset of this
disease until 7 September 2022, more than 608 million cases have been confirmed, and 6.51
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million deaths have been reported worldwide. Out of 608 million people, Europe has the
highest number of infected people of all the continents, with 223 million people infected.
The United States is also considered a country with a high infection rate, with 94 million
infected people. On the other hand, accurate infection statistics from African countries are
not available [3]. So far, different vaccines have been discovered and produced worldwide,
each with different efficiencies. Nevertheless, due to the unfair distribution of vaccines,
people in backward and poor countries still do not have adequate vaccines. Only 21% of
people in low-income countries have been administered at least one dose of vaccines [3].
On the other hand, according to studies, COVID-19 vaccines have a little lower efficacy
against the variants. Therefore, social distancing and the accurate and faster diagnosis
of this disease are the essential measures that must be taken in all countries to deal with
this situation.

According to the recommendation of WHO, the primary diagnosis and screening
method for COVID-19 is reverse transcription polymerase reaction (RT-PCR) [4]. However,
the sensitivity of this method is very variable because it has false-negative or false-positive
results. Therefore, the possibility of COVID-19 infection is not ruled out by a negative
test result and should not be used as the sole treatment criterion or patient management
decisions [5].

Recently, rapid diagnostic tests called RPT have been used to detect COVID-19 viral
proteins, and the result is prepared in 10 to 30 min. This method has a sensitivity of 34% to
80% [6]. The results depend on the concentration of antigen in the sample, the time of onset,
and some other factors. Moreover, serology testing methods detect antibodies that the body
has produced in response to the fight against the virus. However, these antibodies only
form in the body two weeks after infection, so they are not proper for early diagnosis [7]. It
would seem that the use of RT-PCR combined with clinical features such as chest imaging
can facilitate this disease’s management. Therefore, chest imaging (X-ray or CT scan) is a
standard method for quick and easy diagnosis. Imaging characteristics of COVID-19 are
quite different from other types of viral pneumonia [8].

CT scan is highly sensitive to detect COVID-19 [9]. In contrast, X-ray images show
COVID-19-related visual cues [10]. There are several benefits to using X-ray imaging to
detect COVID-19, especially in areas with limited resources and severely affected areas. In
many clinical settings and imaging institutions, X-ray imaging is easily available and is
supposed standard equipment in most healthcare facilities. In developing countries, CT
scanners are used less because of higher maintenance costs. Moreover, the portability of
X-ray systems allows imaging to take place in an isolated room. As a result, the risk of
transmitting the COVID-19 virus through fixed systems like CT scanners and in rooms with
fixed imaging systems is reduced [11]. Moreover, the dose of CT imaging radiation is high,
and in contrast to X-ray, the dose is 30 to 70 times lower [12]. However, one of the biggest
challenges we face is that interpreting radiology images requires radiologists. Because with
the spread of the disease, delicate abnormalities such as ground-glass opacities (GGO) are
created in the lungs, which a specialist radiologist can only interpret. Moreover, when
many people die because of the virus every day worldwide, time is valuable. Therefore,
considering the large number of people with COVID-19 symptoms and the limited number
of qualified radiologists, an automatic approach to identifying the abnormalities can help
the diagnosis process and increase the early diagnosis rate with high accuracy.

Approaches based on artificial intelligence are a possible tool to overcome these
challenges. Deep learning is one of the most widely used branches of artificial intelligence
in various research scenarios. In deep learning methods, unlike classical machine learning
approaches where the extraction of features was performed manually, a deep end-to-end
network is used to automate the feature extraction [13]. The use of deep learning models,
particularly convolutional neural networks (CNNs), has outperformed classical computer
vision and medical image processing. They have recently become one of the most potent
strategies for detecting and classifying COVID-19 using radiographic images and have
demonstrated high accuracy. Most of the current research uses standard CNN architectures
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and transfer learning techniques, but developing customized architectures unique to data
and tasks can be useful in detecting and classifying actual cases.

This study presents a deep learning method to diagnose COVID-19 infection from
chest radiographic images. The proposed CNN model, called FireCovNet, classifies raw
X-ray images of normal, COVID-19, viral pneumonia, bacterial pneumonia, and lung opac-
ity through two different schemas (4-class and 5-class classification) using five various
tasks. The proposed model has an end-to-end learning scheme to learn features without
extracting hand-crafted features. Since deep learning methods have recently focused on
reducing network parameters despite maintaining and even increasing network accuracy,
the proposed network in this study has been tried to be aligned with the intended pur-
pose. The FireCovNet design is inspired by the SqueezeNet, which uses Fire modules
that, despite extracting important features, have fewer parameters (0.6 million). It also
causes reducing feature dimensions, increases stability, speeds up the training process,
and increases convergence and detection accuracy. The type of arrangement and proper
placement of the Fire modules next to the convolution blocks and the use of pooling layers
has tried to achieve a suitable architecture with fast and very accurate output in detecting
COVID-19 disease. A dataset collected from two different datasets was used to train the
suggested model. FireCovNet has been evaluated by stratified five-fold cross-validation. A
model that can accurately and quickly diagnose COVID-19 infection can help physicians
and nurses manage and follow-up with COVID-19 patients. In addition, to compare the
performance of the proposed network in terms of accuracy, speed, and model size, eight
transfer learning networks, including EfficientNetB0 [14], InceptionV3 [15], MobileNet [16],
ResNet50 [17], VGG16 [18], VGG19 [18], Xception [19], SqueezeNet [20], have been used.

This study consists of the following contributions:

• Designing a CNN model called FirecovNet to detect COVID-19 in 4-class and
5-class classification.

• Developing an end-to-end network requires neither feature extraction nor
feature selection.

• Integration of DarkNet and SqueezeNet networks features for reducing feature dimen-
sions, increasing stability, and increasing detection speed and accuracy.

• Evaluating the proposed network and comparing it with eight transfer learning net-
works in terms of speed, accuracy, and model size.

• Using 4000 images that were not used in the training process to test and evaluate
FirecovNet.

The rest of the study is explained as follows: A summary of some recent studies can
be found in Section 2. Section 3 is the material and methods that include a description of
the collected data set, details of the FirecovNet model, and network training. The results of
this research and discussion are given in Section 4 and finally, in Section 5, the conclusion
and future work is set out.

2. Related Works

Researchers are seeking to discover some particular features of chest X-ray images of
COVID-19 patients. Some of the recent research can be summarized as follows.

One of the most leading methods for COVID-19 diagnosis was proposed by Wang et al. [11].
They used a deep residual architecture called COVID-Net to classify chest X-rays into four
classes (COVID-19 vs. normal vs. viral pneumonia vs. bacterial pneumonia). COVID-Net
obtained 83.5% accuracy for 4-class and 93.3% accuracy for 3-class classification. Zebin and
Rezvy [21] used pre-trained VGG16, ResNet50, and EfficientNetB0 convolutional networks,
and in the 3-class classification (COVID-19 vs. normal vs. pneumonia), 90%, 94.3%, and 96.8%
accuracy are obtained, respectively. Ucar and Korkmaz [22] proposed a method in which
SqueezeNet was tuned with the Bayesian optimization. As a result of the research, the 3-class
(COVID-19 vs. normal vs. pneumonia) classification accuracy was 98.3%. Marques et al. [23]
proposed a CNN model based on the EfficientNet architecture and tested it using stratified
ten-fold cross-validation. The accuracy of 2-class classification (COVID-19 vs. normal) is 99.62%
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and for multi-classification (COVID-19 vs. Normal vs. Pneumonia) is 96.70%. Chowdhury
et al. [24] developed a model called PDCOVIDNet that can extract the features of COVID-19 by
dilated convolution in the parallel stack of convolution blocks. The classification accuracy of the
3-class (COVID-19 vs. normal vs. viral pneumonia) is 96.58%. A new serial network containing
five convolution layers was proposed by Nour et al. [25]. This CNN model was used as a deep
feature extractor, and the extracted features were fed into the machine learning algorithms:
decision tree, k-nearest neighbor, and support vector machine (SVM). Hyperparameters were
also optimized utilizing the Bayesian optimization algorithm. The best results were achieved by
SVM with 98.97% accuracy for 3-class classification (COVID-19 vs. normal vs. Viral pneumonia).
Mahmud et al. [26] proposed a new CNN-based architecture called CovXNet that used depth-
wise convolution with modifying dilation rates that can extract diversified features efficiently.
First, they used normal and pneumonia radiography images to train the model and then trained
the network using the generated weights to diagnose COVID-19 in several classification tasks.
The accuracy obtained was 97.4% for the 2-class classification (COVID-19 vs. normal), 87.3% for
2-class classification (COVID-19 vs. viral pneumonia), 94.7% for 2-class classification (COVID-19
vs. bacterial pneumonia), 89.6% for 3-class classification (COVID-19 vs. viral pneumonia vs.
bacterial pneumonia), and 90.3% for the 4-class classification (COVID-19 vs. normal vs. viral
pneumonia vs. Bacterial pneumonia). Aslan et al. [27] introduced an ANN-based automatic
lung segmentation technique and also a new hybrid structure containing bidirectional long
short-term memories (BiLSTM) layer to detect COVID-19, both of which used AlexNet. The
achieved accuracy for the 3-class classification (COVID-19 vs. normal vs. viral pneumonia) was
98.70%. Gupta et al. [28] proposed a deep convolution network called InstaCovNet-19. In the
proposed method, the images were first pre-processed using the stacking method to enhance
quality. Then five pre-trained and fine-tuned networks (ResNet101, Xception, InceptionV3,
MobileNet, and NASNet) were used, while only their last convolution layer was trained. The
outputs of these networks were combined using the integrated stacking method to create a larger
and more robust stacked model. They achieved 99.53% accuracy in the 2-class classification
(COVID-19 vs. non-COVID-19) and 99.08% accuracy in the 3-class classification (COVID-19
vs. normal vs. pneumonia). A deep model based on the DarkNet19 was provided by Ozturk
et al. [29]. Their model includes 17 convolution layers, and an accuracy of 98.08% for 2-class
classification (COVID-19 vs. normal) and 87.02% for 3-class classification (COVID-19 vs. normal
vs. pneumonia) was achieved. Khan et al. [30] developed a network called CoroNet based
on Xception architecture. The developed model was pre-trained on the ImageNet dataset and
then re-trained on a prepared dataset that includes COVID-19 and other chest pneumonia
X-ray images. The accuracy was 89.6% and 95% respectively in the 4-class (COVID-19 vs.
normal vs. viral pneumonia vs. bacterial pneumonia) and 3-class (COVID-19 vs. normal
vs. pneumonia) classifications. CoroDet, a 22-layer CNN model, was presented in [31] and
achieved an accuracy of 99.1% for 2-class classification, 94.2% for 3-class classification, and
91.2% for 4-class classification. In [32], white balance followed by contrast limited adaptive
histogram equalization (CLAHE) is used as an image preprocessing step for enhancing the
visibility of chest X-ray images, and a depth-wise separable convolutional neural network
(DSCNN) trained is used for image classification with lesser parameters and significantly
lighter in size. The proposed method which named COVIDLite, achieved 99.58% for binary
classification (COVID-19 vs. normal), whereas 96.43% for multi-class classification (COVID-19
vs. normal vs. viral pneumonia). A combined CNN-BiLSTM network design in [33] introduced
a deep feature augmentation framework, which helped mitigate the lack of annotated data in
COVID-19 detection to provide more compact and more powerful low-dimensional augmented
reality features than raw CNN for detecting COVID-19. In [34], seven convolutional neural
networks are used, including ResNet50V2, DenseNet121, Xception, InceptionV3, EfficientNet-B0,
MobileNetV2, and EfficientNetV2; also proposed is LightEfficientNetV2, which is intended for
a limited number of chest X-rays and CT scans. On the chest X-ray image dataset, InceptionV3
had the highest accuracy, 96.50%, before fine-tuning, followed by EfficientNetV2, with 97.73%
after fine-tuning. On chest X-ray images, the LightEfficientNetV2 model proposed in this study
had an accuracy of 98.33%. The chest X-ray images are used in seven scenarios according to
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normal, viral, bacterial, and COVID-19 classes for 2–4 classification in [35]. A fusion of deep
transfer learning and LSTM networks is used in the proposed architecture, along with generative
adversarial networks (GANs). In all scenarios except one, they achieved more than 90 percent
accuracy, and they also succeeded in separating COVID-19 from normal with 99% accuracy.
By analyzing chest X-rays and CT scans, authors of [36] proposed a deep convolutional neural
network, “COV-RadNet,” to detect COVID-19, viral pneumonia, lung opacity, and normal,
healthy people. In the four-class classification, they achieved 97% accuracy. In [37], eight
pre-trained convolutional neural networks (CNN) were used to classify images from the chest
X-ray dataset as COVID-19, pneumonia, pneumothorax, tuberculosis, or normal. The highest
accuracy was achieved by Densenet-201, with 97.2%.

Most studies have focused only on classifying the two healthy and COVID-19 classes.
The number of 2-class classification studies to detect COVID-19 is greater than the number
of multi-class classification studies performed. Furthermore, the detection of different lung
diseases is challenging due to the similarity of the chest X-Ray images to each other. As a
result, it is necessary to consider more comprehensive tasks to detect COVID-19 from other
infectious lung diseases. Moreover, most studies have used transfer learning networks,
which often require high computational time for training and testing, and most have a
large-sized saved model and are not suitable for deploying on FPGAs.

3. Materials and Methods
3.1. X-ray Image Dataset

In CNN-based methods, having a proper database with enough data to train the
network is important. The dataset used in this research is, therefore, a collection of two
different datasets of chest X-ray images that are publicly available. The first dataset [38]
collected from several different public datasets, contains 3616 COVID-19 images, 6012 lung
opacity images, 10,200 normal images, and 1345 viral pneumonia images. For the purpose
of achieving symmetry in class distribution, without the use of any data augmentation tech-
niques, 1345 images were selected from each class. In addition, 1345 bacterial pneumonia
images from [39] were added to the final dataset. It should be noted that the remaining
images were used for the final testing of the network. Some examples of the collected
chest X-ray images are also shown in Figure 1. There is no discernible difference between
COVID-19 and other images; thus, this disease is not detectable visually.

3.2. FirecovNet

CNN networks are very similar to simple neural networks; except that they have
convolutional layers to process the input data and also pooling layers to reduce unnecessary
features and make processing easier. The deep architecture of these networks helps to learn
complex features, while the shallow neural networks are not capable of learning these
features. The main idea behind CNNs is to combine local features extracted from the upper
layers with more complicated features extracted from the lower layers [40].

The proposed network, called FirecovNet, whose idea is inspired by the features of
the Squeezenet and DarkNet-19 networks, is a lightweight deep learning network with
fewer parameters and faster training than other well-known networks. The advantage of a
lightweight network is that deploying these CNNs on FPGAs and other limited memory
hardware is more feasible, because there is typically no off-chip memory for FPGAs, and
they typically have less than 10 MB of on-chip memory [41]. On the other hand, FirecovNet
is large enough to detect cases by extracting COVID-19-related features. The network
architecture is illustrated in Figure 2. As shown, FirecovNet consists of three parts. In the
first part, like the DarkNet-19 network, the input images are first fed to a 3 × 3 convolution
layer, and then a 2 × 2 Max pooling is applied. Then these two operations are repeated.

In the Squeezenet, however, the first layer is a 7 × 7 convolution, followed by a 3 × 3
max pooling, which leads to more parameters. Moreover, like DarkNet-19, a conv block
has a convolutional layer, followed by a batch normalization [42] operator and a Leaky
ReLU [43] activation function. For standardizing inputs, the batch normalization operator
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is used. It also has other advantages, such as stabilizing the training process, speeding up
convergence, and regularizing the model. Leaky ReLU is a type of ReLU operator that is
used to prevent the dying ReLU [44] problem. Because unlike other activation functions
with zero derivatives for all negative inputs, it has a small slope for negative values to
overcome this problem. The function of Leaky ReLU is defined as follows:

f (x) =
{

0.01x x < 0
x x ≥ 0

(1)

The Maxpool method reduces each feature map’s length and width by computing the
maximum of a region defined by its filter. The size of all Max Pooling filters in FirecovNet
is 2 × 2 with stride 2. The second part of the FirecovNet has four Fire modules, which
were first introduced in the SqueezeNet [41], which has resulted in the same accuracy
as the AlexNet network but with fewer parameters. The structure of SqueezeNet with
eight Fire modules is such that it causes to decrease the memory consumption and the
processing time for classification compared with other multi-layered deep learning models.
The Fire module consumes much less space than normal convolution filters to store weight
parameters but still achieves satisfactory results. The Fire module is the main module of
proposed network and has squeeze (which has only 1 × 1 convolution) and expand (mix of
1 × 1 and 3 × 3 convolutions) structures. The purpose of using this module is to replace
1 × 1 filters with 3 × 3 filters and reduce the number of input channels to 3 × 3 filters
and thus reduce the network parameters. Moreover, using this squeezing and expanding
scheme, the latent features are better extracted. The following conditions must be satisfied
by the Fire module:

S1×1 < (E1×1 + E3×3) (2)

where S1×1 is the number of 1 × 1 filters in the squeeze layer and E1×1 is the number of 1
× 1 filters in the expand layer, and E3×3 is the number of 3 × 3 filters in the expand layer.
The conv block is also used in the squeeze and expand sections, and like SqueezeNet, the
number of fire modules filters has gradually increased. In order to have the same height
and width in the extracted features of the 1 × 1 and 3 × 3 filters, zero-padding was applied
to the 3 × 3 filter input in the expansion section. In fact, one-pixel zero-padding is applied
to all 3 × 3 filters in the proposed model. The SqueezeNet network can also balance its
performance and model size by adjusting the squeeze ratio (SR), which is the ratio of the
number of squeeze layer filters to the expand layer. Therefore, it is possible to make the best
use of the Fire module by setting this hyper parameter according to the device’s computing
power. In the FirecovNet, SR = 0.25 was considered. There are also three conv blocks in
the second part of the FirecovNet, each followed by a Max Pooling layer. Using these Max
Pooling layers, the feature map size is reduced by a factor of 8, and it is another effective
way to diminish the computational load of the network. Finally, like SqueezeNet and
DarkNet-19, the third part of the proposed network consists of a 1 × 1 convolution layer
with a number of filters equal to the number of classification classes, followed by a global
average pooling layer, which was first developed by Lin et al. [45]. The main advantages
of using the global average pooling layer instead of the fully connected layer are that no
optimization of parameters is required and the number of parameters and computational
complexity is also significantly reduced [46]. FirecovNet ends with a Softmax classifier that
provides multi-class probability distributions. The network details are shown in Table 1.
Table 2 also presents the total number of trainable and non-trainable parameters (weights).
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Table 1. Detailed layer configuration of FirecovNet. (N = Number of classes).

Layer Name/Type Output Size Filter Size S1×1 E1×1 E3×3

Input image 224 × 224 × 3 - - - -
Convolutional 224 × 224 × 8 3 × 3 - - -

Max pool 112 × 112 × 8 2 × 2 - - -
Convolutional 112 × 112 × 16 3 × 3 - - -

Max pool 56 × 56 × 16 2 × 2
Fire 56 × 56 × 64 - 8 32 32

Convolutional 56 × 56 × 32 3 × 3 - - -
Max pool 28 × 28 × 32 2 × 2 - - -

Fire 28 × 28 × 128 - 16 64 64
Convolutional 28 × 28 × 64 3 × 3 - - -

Max pool 14 × 14 × 64 2 × 2 - - -
Fire 14 × 14 × 256 - 32 128 128

Convolutional 14 × 14 × 128 3 × 3 - - -
Max pool 7 × 7 × 128 2 × 2 - - -

Fire 7 × 7 × 512 - 64 256 256
Convolutional 7 × 7 × N 1 × 1 - - -
Average pool 1 × 1 × N Global - - -

Softmax N - - - -

Table 2. Number of FirecovNet parameters in 4 and 5-class classification.

Task Trainable Parameters Non-Trainable
Parameters Total Parameters

4-class classification 625,648 2664 622,984
5-class classification 626,175 2666 623,509

3.3. Network Implementation and Training Process

In this research, five classification tasks were considered to identify COVID-19 cases
using chest radiography images. Table 3 summarizes the classification tasks considered
for this study. The sizes of the X-ray images in the collected dataset were not uniform.
Therefore, the color-space of the images was changed to RGB, and their size was converted
into the same size as 224 × 224 × 3. All tasks were implemented in Keras 2.3.1 on top of
Tensorflow 1.14.0 using a system with Intel® Core™ i7-7700 K CPU @ 4.20 GHz, 16 GB
RAM, with an NVIDIA GeForce RTX 2080 Super-8GB GPU. The categorical cross-entropy
and binary cross-entropy loss functions were used for multi-class and binary classification,
respectively. The developed model was trained end-to-end using the ADAM optimizer [47].
The initial learning rate was 0.001, but the ReduceLROnPlateau technique lowered the
learning rate when a metric stopped improving. This callback monitors improvement and
reduces the learning rate if no progress is seen for a “patience” number of epochs.

Table 3. Considered classification tasks in this research.

No. of Class Task Classification Task

4

BCNV Bacterial pneumonia vs. COVID-19 vs. normal vs. viral
pneumonia

BCLN Bacterial pneumonia vs. COVID-19 vs. lung opacity vs. normal

BCLV Bacterial pneumonia vs. COVID-19 vs. lung opacity vs. viral
pneumonia

CLNV COVID-19 vs. lung opacity vs. normal vs. viral pneumonia

5 BCLNV Bacterial pneumonia vs. COVID-19 vs. lung opacity vs. normal
vs. viral pneumonia

Moreover, the batch size was set to 8 images with 50 backpropagation epochs. All
evaluations were done using the stratified five-fold cross-validation (CV) technique using
80% for the training set and 20% for the test set (unseen folds). During training in each fold,
10% of the training data were used as a validation set to prevent overfitting.
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3.4. Metrics

The confusion matrix was used to obtain a more comprehensive picture of model
performance and show the relationship between model output and actual values. This
matrix is used in artificial intelligence to visualize important prediction analysis, such as
accuracy, precision sensitivity, and F1-score. The following equations present how these
metrics can be calculated:

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Precision =
TP

TP + FP
(4)

Sensitivity =
TP

TP + FN
(5)

F1 − Score =
2 × TP

2 × TP + FP + FN
(6)

where TP, TN, FN, and FP are true positive, true negative, false negative, and false posi-
tive, respectively.

The AUC-ROC curve is used to evaluate classification models’ ability to distinguish
between classes and graphically observe their performance. The receiver performance
characteristic curve (ROC) is a probability graph, and the degree of separability in the
classification is indicated by the AUC (area under the curve).

4. Results and Discussion

The results of the COVID-19 automatic detection from chest X-ray images based on
FirecovNet in all classification tasks are presented and discussed in this section. Because
of using the stratified 5-fold cross-validation method, evaluation metrics of all folds were
averaged for all tasks. The loss and accuracy curves of 5th fold for all classification tasks
are shown in Figures 3 and 4. As can be seen, the loss and accuracy curves for all tasks
converge with the number of epochs and reach their steady-state value. The overlapped
confusion matrix of all tasks is shown in Figures 5 and 6. Moreover, the quantitative results
of the 4, and 5-class classifications for all folds are given in Tables 4 and 5, respectively. As
can be seen, all of the classification tasks have promising results. In 4-class classification,
the best performance was achieved in the BCLV task. The reported average accuracy is
98.64%. Moreover, average precision, sensitivity, and F1-score are 98.64%, 98.63%, and
98.64%. Furthermore, in 4-class classification, CLNV was underperformed. The average
accuracy value of all folds is 95.92%. The overall average is 95.9% for precision, 95.94% for
sensitivity, and 95.9% for F1-score. Ultimately, the average values reported in the 5-class
classification task are 96.96%, 96.97%, 96.97%, and 96.96% for precision, accuracy, sensitivity,
and F1-score, respectively. The AUC-ROC curves for 5th fold of all classification tasks are
shown in Figure 7 to demonstrate the high performance of FirecovNet. In Table 6, the
running times of both test and training phases for all classification tasks are provided.
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Figure 6. Overlapped confusion matrix of 5-class classifications.

Table 4. Performance of FirecovNet on each fold in the 4-class classification tasks.

Task Types Folds
Metrics

Accuracy
(%)

Precision
(%)

Sensitivity
(%)

F1-Score
(%)

BCNV

1 97.49 97.56 97.56 97.55
2 97.67 97.63 97.66 97.64
3 97.76 97.82 97.86 97.82
4 97.86 97.81 97.76 97.78
5 98.23 98.22 98.25 98.23

Average 97.80 ± 0.24 97.8 ± 0.22 97.81 ± 0.23 97.80 ± 0.23

BCLN

1 97.02 97.24 97.03 97.02
2 97.02 96.89 97.06 96.96
3 98.32 98.33 98.33 98.33
4 97.49 97.5 97.52 97.5
5 97.39 97.39 97.39 97.39

Average 97.45 ± 0.47 97.47 ± 0.47 97.46 ± 0.47 97.44 ± 0.49

BCLV

1 98.51 98.52 98.54 98.54
2 98.97 98.97 98.93 98.95
3 98.51 98.56 98.56 98.56
4 98.42 98.42 98.36 98.38
5 98.79 98.77 98.76 98.77

Average 98.64 ± 0.2 98.64 ± 0.19 98.63 ± 0.19 98.64 ± 0.19

CLNV

1 96.37 96.29 96.44 96.35
2 94.79 94.82 94.69 94.73
3 95.81 95.77 95.89 95.82
4 96.09 96.05 96.1 96.06
5 96.56 96.57 96.59 96.56

Average 95.92 ± 0.62 95.9 ± 0.6 95.94 ± 0.67 95.9 ± 0.63
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Table 5. Performance of FirecovNet on each fold in the 5-class classification tasks.

Task Types Folds
Metrics

Accuracy
(%)

Precision
(%)

Sensitivity
(%)

F1-Score
(%)

BCNLV

1 96.80 96.89 96.89 96.87
2 96.80 96.83 96.86 96.84
3 96.50 96.41 96.45 96.42
4 97.32 97.35 97.29 97.31
5 97.39 97.37 97.39 97.38

Average 96.96 ± 0.34 96.97 ± 0.35 96.97 ± 0.11 96.96 ± 0.35
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Table 6. Running time for all classification tasks by FirecovNet in 50 epochs.

Task Train (for Each Epoch) Test (for All of the Test Data)

BCNV 22 s 2 s
BCLN 22 s 2 s
BCLV 21 s 2 s
CLNV 21 s 2 s

BCLNV 27 s 3 s

According to Table 6, the testing and training phases require more time for BCLNV
task than for other tasks.

To further investigate the performance of the FirecovNet network, the 5-class classifica-
tion task was simulated using eight transfer learning networks. EfficientNetB0, InceptionV3,
MobileNet, ResNet50, VGG16, VGG19, Xception, SqueezeNet are eight comparison net-
works that have been widely used in recent studies to detect COVID-19. Figure 8 shows
the loss and accuracy curves of the mentioned networks and the proposed network (5th
fold). As can be seen, FirecovNet performed better than SqueezeNet, and after 30 epochs
reached its steady-state, which is almost equal to other networks. Additionally, Figure 9
presents the running time of BCLNV task based on FirecovNet compared to the eight
networks mentioned above in 50 iterations. It can be seen that the proposed model has a
shorter running time for both phases. This is due to the fact that in transfer learning-based
networks, the computation time is often high. As well, the bar graph of all networks
for comparison, which includes accuracy, precision, sensitivity, and F1-score, is shown in
Figure 10. Xception and inceptionv3 networks performed best. The VGG19 network, on
the other hand, had the worst performance. As shown, the FirecovNet network performed
almost similar to other networks and even better than some. Table 7 also compares the
proposed network with other networks in terms of the number of parameters and the size
of the saved model. As mentioned, although the FirecovNet network does not have the
best performance in terms of accuracy, precision, sensitivity, and F1-score, it has the least
training and testing time, with having the smallest number of parameters, and the size of
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the saved model is smaller. Therefore, the proposed network is still promising in terms of
speed and being small-sized and is very suitable and promising for deploying on FPGA.
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Table 7. Comparison of the number of parameters and size of the saved model for different networks
in a 5-class classification task.

Network Model Size (MB) Parameters (Millions)

EfficientNetB0 53.9 4.68
InceptionV3 263 22.45
MobileNet 41.9 3.64
ResNet50 288 24.6
VGG16 174 14.92
VGG19 236 20.23

Xception 256 21.6
SqueezeNet 8.9 0.74
FirecovNet 7.4 0.62

FirecovNet should be evaluated with data that are not used as training data to be used
in practice. Therefore, the trained model in the BCLN task was tested on 4000 images (1000
bacterial pneumonia, 1000 COVID-19, 1000 lung opacity, and 1000 normal) which were
split from the remaining images in the collected dataset. Figure 11 shows the confusion
matrix and bar chart of accuracy, precision, sensitivity, and F1-score. According to this
figure, although the proposed model performed poorly in detecting normal images, it had
an acceptable performance in the detection of other classes and, in total, achieved 94%
accuracy. Therefore, FirecovNet can perform well in a dataset that was not used in its
training phase.

Deep learning has recently focused on networks that, in addition to being highly
accurate and competing with other state-of-the-art networks, have fewer parameters.
Because having fewer parameters makes the training stage more efficient and faster, and due
to the small size of these models, they are easy to move. It is also easier to implement them
for embedded systems and also to store them on FPGAs. Table 8 shows the performance of
the proposed FirecovNet compared to recent state-of-art research. In implementation of
networks with a large number of parameters, FPGAs will require a significant amount of
storage, external memory bandwidth, and computational resources on the order of billions
of operations per second.
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Figure 11. Confusion matrix and bar chart diagram of accuracy, precision, sensitivity, and F1-score of
FirecovNet for the dataset that was not used in its training phase.

Table 8. Comparison of the FirecovNet results with other state-of-art studies.

Ref. No. of Classes Accuracy
(%)

Sensitivity
(%)

[11] 3 93.3 93.33

[22] 3 98.26 98.26

[23] 2 99.62 99.63
3 96.70 96.69

[24] 3 96.58 96.59

[25] 3 98.97 89.39

[26]
3 89.6 90.3
4 90.2 89.9

[27] 3 98.7 98.76

[28]
2 99.52 99.5
3 99.08 99.08

[29] 2 98.08 95.13
3 87.02 85.35

[30]
2 99 99.3
3 95 96.9
4 89.6 89.92

[31]
2 99.1 95.36
3 94.2 92.76
4 91.2 91.76

[32]
2 99.58 99.58
3 96.43 96

[33] 3 97.26 99.93
5 84.64 82.19

[35] 4 91.8 91

[36] 4 97 96

FirecovNet

4 (BCNV) 97.8 97.8
4 (BCLN) 97.46 97.46
4 (BCLV) 98.64 98.63
4 (CLNV) 95.92 95.94

5 96.96 96.97

As can be observed, FirecovNet surpassed recent studies in terms of the number
of classification tasks studied and the number of classified classes. Although the data
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distribution for training and evaluation sets is the same in all previous studies, in some
of them k-fold cross-validation has not been used. Therefore, due to the differences in
datasets, simulation environments, and techniques, it is important to be aware that it is not
possible to perform a one-to-one comparison.

However, FirecovNet, despite the small number of parameters, achieved promising
results in all classification tasks. Although transfer learning and pretrained networks have
been used in most studies, however, in this research, a new CNN model is presented that is
trained to diagnose COVID-19 infection from scratch and does not require manual feature
extraction. This robust model is efficient and fast, and it has a lower computational cost
because of fewer parameters.

Due to the FirecovNet architecture, the low number of parameters is because of using
Fire modules, the down-sampling between layers, and the placement of the global average
pooling layer’s placement instead of the fully connected layers. Moreover, no skip or
residual connection has been used. This model has achieved promising outcomes and can
detect a positive patient with COVID-19 in less than one second. In this study, to prevent
data leakage errors, images in training, validation, and testing sets were not randomly
selected. However, this has not been mentioned in many studies, and the results may not
be accurate for this reason.

The limitation of the number of classes in the database is a challenge. There were a total
of five categories in this study. Therefore, it needs to be evaluated using a more extensive
data set and more classes of other lung infectious diseases such as SARS, MERS, etc.

5. Conclusions

The COVID-19 virus has now spread worldwide, infecting and killing many people.
The low sensitivity of COVID-19 diagnosis tests, such as RT-PCR, may lead to inaccurate
results. Therefore, a combination of these tests and chest imaging can facilitate the manage-
ment of this disease. Over the past year, the use of CNN models and chest radiography
images to rapidly diagnose COVID-19 has become popular. These models have an end-
to-end learning structure without the need for hand-crafted feature extraction. This study
introduced a deep-learning-based model for automatically detecting COVID-19 cases from
chest radiography images for five categories: bacterial pneumonia, COVID-19, lung opacity,
normal, and viral pneumonia. By implementing five scenarios, the proposed model was
able to achieve an accuracy of at least 95% in 4 and 5-class classifications. The proposed
network is also lightweight, and due to its low computational cost, it is a rapid model
to help physicians correctly detect COVID-19 cases. An interesting approach that can be
used in future research is evaluating other patient symptoms and risk factors along with
chest x-rays. Because this deadly virus has plagued the world for more than two years,
artificial intelligence-based systems, especially deep learning with the rapid, accurate, and
automatic diagnosis of this disease, can play an important role in combating the virus.
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