Comparative Analysis of Melanoma Classification Using Deep Learning Techniques on Dermoscopy Images
Abstract
:1. Introduction
2. Materials and Methods
3. Methodology
3.1. ALEXNET
3.2. VGG-16
3.3. RESNET50
3.4. INCEPTIONV3
3.5. GOOGLENET
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pereira, P.M.M.; Thomaz, L.A.; Tavora, L.M.N.; Assuncao, P.A.A.; Fonseca-Pinto, R.; Paiva, R.P.; Faria, S.M.M. Multiple Instance Learning Using 3D Features for Melanoma Detection. IEEE Access 2022, 10, 76296–76309. [Google Scholar] [CrossRef]
- American Cancer Society. Available online: https://www.cancer.org/research/cancer-facts-statistics.html (accessed on 1 January 2022).
- Mustafa, S.; Dauda, A.B.; Dauda, M. Image processing and SVM classification for melanoma detection. In Proceedings of the 2017 International Conference on Computing Networking and Informatics (ICCNI), Lagos, Nigeria, 29–31 October 2017. [Google Scholar]
- Song, L.; Lin, J.Z.; Wang, Z.J.; Wang, H.Q. An End-to-End Multi-Task Deep Learning Framework for Skin Lesion Analysis. IEEE J. Biomed. Health Inform. 2020, 24, 2912–2921. [Google Scholar] [CrossRef] [PubMed]
- Hagerty, J.R.; Stanley, R.J.; Almubarak, H.A.; Lama, N.; Kasmi, R.; Guo, P.; Drugge, R.J.; Rabinovitz, H.S.; Oliviero, M.; Stoecker, W.V. Deep Learning and Handcrafted Method Fusion: Higher Diagnostic Accuracy for Melanoma Dermoscopy Images. IEEE J. Biomed. Health Inform. 2019, 23, 1385–1391. [Google Scholar] [CrossRef]
- Soyer, H.P.; Argenziano, G.; Talamini, R.; Chimenti, S. Is dermoscopy useful for the diagnosis of melanoma? Arch. Dermatol. 2001, 137, 1361–1363. [Google Scholar] [CrossRef] [PubMed]
- Michael, A.M.; Noel, C.F.C.; Stephen, W.D.; David, A.G.; Brian, H.; Aadi, K.; Nabin, M.; Cristina, C.M.; Emre, C.; Jennifer, L.D.; et al. Results of the 2016 international skin imaging collaboration international symposium on biomedical imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images. Am. Acad. Dermatol. 2018, 78, 270–277. [Google Scholar]
- Haenssle, H.A.; Fink, C.; Schneiderbauer, R.; Toberer, F.; Buhl, T.; Blum, A.; Kalloo, A.; Hassen, A.B.H.; Thomas, L.; Enk, A.; et al. Man against machine: Diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann. Oncol. 2018, 29, 1836–1842. [Google Scholar] [CrossRef]
- Abunadi, I.; Senan, E.M. Deep learning and machine learning techniques of diagnosis dermoscopy images for early detection of skin diseases. Electronics 2021, 10, 3158. [Google Scholar] [CrossRef]
- Ozturk, S.; Tolga, C. Deep clustering via center-oriented margin free-triplet loss for skin detection in highly imbalance datasets. IEEE J. Biomed. Health Inform. 2022, 26, 4679–4690. [Google Scholar] [CrossRef]
- Cassidy, B.; Kendrick, C.; Brodzicki, A.; Jaworek-Korjakowska, J.; Yap, M.H. Analysis of the ISIC image datasets: Usage, benchmarks and recommendations. Med. Image Anal. 2022, 75, 102305. [Google Scholar] [CrossRef]
- Gessert, N.; Sentker, T.; Madesta, F.; Schmitz, R.; Kniep, H.; Baltruschat, I.; Werner, R.; Schlaefer, A. Skin lesion classification using CNNs with path-based attention and diagnosis-guided loss weighting. IEEE Trans. Biomed. Eng. 2020, 67, 495–503. [Google Scholar] [CrossRef]
- Santos, F.; Silva, F.; Georgieva, P. Transfer learning for skin lesion classification using convolutional neural networks. In Proceedings of the International Conference on Innovations in Intelligent Systems and Applications (INISTA), Kocaeli, Turkey, 25–27 August 2021. [Google Scholar]
- Gu, Y.; Ge, Z.; Bonnington, C.P.; Zhou, J. Progressive transfer learning and adversarial domain adaptation for cross domain skin disease classification. IEEE J. Biomed. Health Inform. 2019, 24, 1379–1393. [Google Scholar]
- Albert, B.A. Deep learning from limited training data: Novel segmentation and ensemble algorithms applied to automatic melanoma diagnosis. IEEE Access 2020, 8, 31254–31269. [Google Scholar] [CrossRef]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 52, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Di Biasi, L.; Citarella, A.A.; Risi, M.; Tortora, G. A cloud approach for melanoma detection based on deep learning networks. IEEE J. Biomed. Health Inform. 2022, 26, 962–972. [Google Scholar] [CrossRef]
- Ashraf, R.; Afzal, S.; Rehman, A.U.; Gul, S.; Baber, J.; Bakhtyar, M.; Mehmood, I.; Song, O.Y.; Maqsood, M. Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access 2020, 8, 147858–147871. [Google Scholar] [CrossRef]
- Goyal, M.; Oakley, A.; Bansal, P.; Dancey, D.; Yap, M.H. Skin lesion segmentation in dermoscopy images with ensemble deep learning methods. IEEE Access 2019, 8, 4171–4181. [Google Scholar] [CrossRef]
- Yu, Z.; Jiang, X.; Zhou, F.; Qin, J.; Ni, D.; Chen, S.; Lei, B.; Wang, T. Melanoma recognition in dermoscopy images via aggregated deep convolutional features. IEEE Trans. Biomed. Eng. 2019, 66, 1006–1016. [Google Scholar] [CrossRef]
- Razzak, I.; Naz, S. Unit-Vise: Deep shallow unit-vise residual neural networks with transition layer for expert level skin cancer classification. IEEE Trans. Comput. Biol. Bioinform. 2022, 19, 1225–1234. [Google Scholar] [CrossRef]
- Adegun, A.A.; Viriri, S. Deep learning-based system for automatic melanoma detection. IEEE Access 2019, 8, 7160–7172. [Google Scholar] [CrossRef]
- Karl, E. Skin lesion classification by ensembles of deep convolutional neural networks and regularly spaced shifting. IEEE Access 2022, 9, 12193–112205. [Google Scholar]
- Sharma, A.K.; Tiwari, S.; Aggarwal, G.; Goenka, N.; Kumar, A.; Chakrabarti, P.; Chakrabarti, T.; Gono, R.; Leonowicz, Z.; Jasiński, M. Dermatologist-level classification of skin cancer using cascaded ensembling of convolutional neural network and handcrafted features based neural network. IEEE Access 2022, 10, 17920–17932. [Google Scholar] [CrossRef]
- Zhou, Q.; Shi, Y.; Xu, Z.; Qu, R.; Xu, G. Classifying melanoma skin lesions using convolutional spiking neural networks with unsupervised STDP learning rule. IEEE Access 2020, 8, 101309–101319. [Google Scholar] [CrossRef]
- Vocaturo, E.; Zumpano, E. Dangerousness of dysplastic nevi: A multiple instance learning solution for early diagnosis. In Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM), San Diego, CA, USA, 18–21 November 2019. [Google Scholar]
- Lu, X.; Firoozeh Abolhasani Zadeh, Y.A. Deep learning-based classification for melanoma detection using XceptionNet. J. Healthc. Eng. 2022, 2022. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xie, Y.; Xia, Y.; Shen, C. Attention residual learning for skin lesion classification. IEEE Trans. Med. Imaging 2019, 38, 2092–2103. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
Dataset | Images | Link |
---|---|---|
MedNode Dataset | 170 Total Images 70 Melanoma | https://www.cs.rug.nl/~imaging/databases/melanoma_naevi/ (accessed on 30 June 2022) |
PH2 Dataset | 200 Total Images 40 Melanoma | https://www.fc.up.pt/addi/ph2%20database.html (accessed on 30 June 2022) |
HAM10000 Kaggle Dataset | 10015 Total Images 1113 Melanoma | https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/DBW86T (accessed on 30 June 2022) |
PARAMETERS | Size of Input | Epoch | Weights | Iterations | Optimizer | Classifier | Learning Rate |
---|---|---|---|---|---|---|---|
ALEXNET | (227,227,3) | 50 | ImageNet | 150 | Sdgm | SoftMax | 0.0001 |
VGG-16 | (224,224,3) | 50 | ImageNet | 150 | Adam | SoftMax | 0.0001 |
RESNET50 | (224,224,3) | 50 | ImageNet | 150 | Adam | SoftMax | 0.0001 |
INCEPTIONV3 | (299,299,3) | 50 | ImageNet | 150 | Adam | SoftMax | 0.0001 |
GOOGLENET | (224,224,3) | 50 | ImageNet | 150 | Adam | SoftMax | 0.0001 |
Architecture | PERFORMANCE MEASURES | |||||
---|---|---|---|---|---|---|
AC | SE | SP | PPV | NPV | AUC | |
ALEXNET | 92.5% | 86% | 99% | 98.9% | 87.6% | 0.9736 |
VGG16 | 93.2% | 91.5% | 95% | 94.8% | 91.8% | 0.9658 |
RESNET50 | 94.2% | 89% | 99.5% | 99.4% | 90% | 0.9810 |
GOOGLENET | 96.5% | 95.5% | 97.5% | 97.4% | 95.6% | 0.9783 |
INCEPTIONV3 | 97.1% | 98.6% | 96% | 94.5% | 99% | 0.9861 |
Architecture | PERFORMANCE MEASURES | |||||
---|---|---|---|---|---|---|
AC | SE | SP | PPV | NPV | AUC | |
ALEXNET | 94.8% | 97.5% | 92% | 92.4% | 97.4% | 0.9778 |
VGG16 | 92.8% | 91.5% | 94% | 93.8% | 91.7% | 0.9710 |
RESNET50 | 93% | 92.5% | 93.5% | 93.4% | 92.6% | 0.9793 |
GOOGLENET | 95.8% | 94.5% | 97% | 96.9% | 94.6% | 0.9764 |
INCEPTIONV3 | 97.2% | 98.5% | 96% | 96.1% | 98.5% | 0.9831 |
Architecture | PERFORMANCE MEASURES | |||||
---|---|---|---|---|---|---|
AC | SE | SP | PPV | NPV | AUC | |
ALEXNET | 90.2% | 86.7% | 93.7% | 93.2% | 87.5% | 0.9420 |
VGG16 | 91.2% | 87% | 95.5% | 95.1% | 88% | 0.9564 |
RESNET50 | 95.5% | 93.5% | 97.5% | 97.4% | 93.8% | 0.9780 |
GOOGLENET | 93.8% | 96% | 91.5% | 91.9% | 95.8% | 0.9832 |
INCEPTIONV3 | 96.2% | 95.5% | 97% | 97% | 95.6% | 0.9774 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeyakumar, J.P.; Jude, A.; Priya Henry, A.G.; Hemanth, J. Comparative Analysis of Melanoma Classification Using Deep Learning Techniques on Dermoscopy Images. Electronics 2022, 11, 2918. https://doi.org/10.3390/electronics11182918
Jeyakumar JP, Jude A, Priya Henry AG, Hemanth J. Comparative Analysis of Melanoma Classification Using Deep Learning Techniques on Dermoscopy Images. Electronics. 2022; 11(18):2918. https://doi.org/10.3390/electronics11182918
Chicago/Turabian StyleJeyakumar, Jacinth Poornima, Anitha Jude, Asha Gnana Priya Henry, and Jude Hemanth. 2022. "Comparative Analysis of Melanoma Classification Using Deep Learning Techniques on Dermoscopy Images" Electronics 11, no. 18: 2918. https://doi.org/10.3390/electronics11182918
APA StyleJeyakumar, J. P., Jude, A., Priya Henry, A. G., & Hemanth, J. (2022). Comparative Analysis of Melanoma Classification Using Deep Learning Techniques on Dermoscopy Images. Electronics, 11(18), 2918. https://doi.org/10.3390/electronics11182918