Bitwise Logical Operations in VCMA-MRAM
Abstract
:1. Introduction
2. Fundamentals of VCMA-MRAM
3. Proposed Multi-Functional Circuit
4. Simulations and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, N.S.; Austin, T.; Baauw, D.; Mudge, T.; Flautner, K.; Hu, J.S.; Irwin, M.J.; Kandemir, M.; Narayanan, V. Leakage current: Moore’s law meets static power. Computer 2003, 36, 68–75. [Google Scholar]
- Wulf, W.A.; McKee, S.A. Hitting the memory wall: Implications of the obvious. ACM SIGARCH Comput. Archit. News 1995, 23, 20–24. [Google Scholar] [CrossRef]
- Chi, P.; Li, S.; Xu, C.; Zhang, T.; Zhao, J.; Liu, Y.; Wang, Y.; Xie, Y. PRIME: A Novel Processing-in-Memory Architecture for Neural Network Computation in ReRAM-Based Main Memory. In Proceedings of the 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), Seoul, Korea, 18–22 June 2016; pp. 27–39. [Google Scholar]
- Li, S.; Xu, C.; Zou, Q.; Zhao, J.; Lu, Y.; Xie, Y. Pinatubo: A processing-in-memory architecture for bulk bitwise operations in emerging non-volatile memories. In Proceedings of the 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX, USA, 2–10 June 2016; pp. 1–6. [Google Scholar]
- Hanyu, T.; Endoh, T.; Suzuki, D.; Koike, H.; Ma, Y.; Onizawa, N.; Natsui, M.; Ikeda, S.; Ohno, H. Standby-Power-Free Integrated Circuits Using MTJ-Based VLSI Computing. Proc. IEEE 2016, 104, 1844–1863. [Google Scholar] [CrossRef]
- Wolf, S.A.; Awschalom, D.D.; Buhrman, R.A.; Daughton, J.M.; Von Molnár, S.; Roukes, M.L.; Chtchelkanova, A.Y.; Treger, D.M. Spintronics: A spin-based electronics vision for the future. Science 2001, 294, 1488–1495. [Google Scholar] [CrossRef]
- Kvatinsky, S.; Friedman, E.G.; Kolodny, A.; Weiser, U.C. The Desired Memristor for Circuit Designers. IEEE Circuits Syst. Mag. 2013, 13, 17–22. [Google Scholar] [CrossRef]
- Lin, S.; Kim, Y.B.; Lombardi, F. CNTFET-based design of ternary logic gates and arithmetic circuits. IEEE Trans. Nanotechnol. 2011, 10, 217–225. [Google Scholar] [CrossRef]
- Mikolajick, T.; Heinzig, A.; Trommer, J.; Baldauf, T.; Weber, W.M. The RFET—A reconfigurable nanowire transistor and its application to novel electronic circuits and systems. Semicond. Sci. Technol. 2017, 32, 043001. [Google Scholar] [CrossRef]
- Cheng, R.; Li, M.; Sapkota, A.; Rai, A.; Pokhrel, A.; Mewes, T.; Mewes, C.; Xiao, D.; Graef, M.D.; Sokalski, V. Magnetic domain wall skyrmions. Phys. Rev. B. 2019, 99, 184412. [Google Scholar] [CrossRef]
- Wang, Y.; Mehmood, N.; Hou, Z.; Mi, W.; Zhou, G.; Gao, X.; Liu, J. Electric Field-Driven Rotation of Magnetic Vortex Originating from Magnetic Anisotropy Reorientation. Adv. Electron. Mater. 2021, 8, 2100561. [Google Scholar] [CrossRef]
- Yang, H.; Wang, C.; Wang, X.; Wang, X.S.; Cao, Y.; Yan, P. Twisted skyrmions at domain boundaries and the method of image skyrmions. Phys. Rev. B. 2018, 98, 014433. [Google Scholar] [CrossRef]
- Divyanshu, D.; Kumar, R.; Khan, D.; Amara, S.; Massoud, Y. Physically Unclonable Function using GSHE driven SOT assisted MTJ for next Generation Hardware Security Applications. In Proceedings of the IEEE 65th International Midwest Symposium on Circuits and Systems (MWSCAS), Virtual, 7–10 August 2022; pp. 1–4. [Google Scholar]
- Cai, H.; Wang, Y.; de Barros Naviner, L.A.; Yang, J.; Zhao, W. Exploring hybrid STT-MTJ/CMOS energy solution in near-/sub-threshold regime for IoT applications. IEEE Trans. Magn. 2018, 54, 3400409. [Google Scholar] [CrossRef]
- Kim, J.; Chen, A.; Behin-Aein, B.; Kumar, S.; Wang, J.-P.; Kim, C.H. A technology-agnostic MTJ SPICE model with user-defined dimensions for STT-MRAM scalability studies. In Proceedings of the 2015 IEEE Custom Integrated Circuits Conference (CICC), San Jose, CA, USA, 28–30 September 2015; pp. 1–4. [Google Scholar]
- Islam, S.M.; Sangwan, V.K.; Buchholz, D.B.; Wells, S.A.; Peng, L.; Zeng, L.; He, Y.; Hersam, M.C.; Ketterson, J.B.; Marks, T.J.; et al. Amorphous to Crystal Phase Change Memory Effect with Two-Fold Bandgap Difference in Semiconducting K2Bi8Se13. J. Am. Chem. Soc. 2021, 143, 6221–6228. [Google Scholar] [CrossRef]
- Jain, S.; Ranjan, A.; Roy, K.; Raghunathan, A. Computing in Memory With Spin-Transfer Torque Magnetic RAM. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2018, 26, 470–483. [Google Scholar] [CrossRef]
- Kang, W.; Wang, H.; Wang, Z.; Zhang, Y.; Zhao, W. In-Memory Processing Paradigm for Bitwise Logic Operations in STT–MRAM. IEEE Trans. Magn. 2017, 53, 6202404. [Google Scholar] [CrossRef]
- Cai, H.; Wang, Y.; De Barros Naviner, L.A.; Zhao, W. Robust Ultra-Low Power Non-Volatile Logic-in-Memory Circuits in FD-SOI Technology. IEEE Trans. Circuits Syst. I Regul. Pap. 2017, 64, 847–857. [Google Scholar] [CrossRef]
- Parveen, F.; He, Z.; Angizi, S.; Fan, D. HielM: Highly flexible in-memory computing using STT MRAM. In Proceedings of the 2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC), Jeju Island, Korea, 22–25 June 2018; pp. 361–366. [Google Scholar]
- Zabihi, M.; Zhao, Z.; Mahendra, D.C.; Chowdhury, Z.I.; Resch, S.; Peterson, T.; Karpuzcu, U.R.; Wang, J.-P.; Sapatnekar, S.S. Using Spin-Hall MTJs to Build an Energy-Efficient In-memory Computation Platform. In Proceedings of the 20th International Symposium on Quality Electronic Design (ISQED), Santa Clara, CA, USA, 6–7 March 2019; pp. 52–57. [Google Scholar]
- Kumar, R.; Divyanshu, D.; Khan, D.; Amara, S.; Massoud, Y. Spin Orbit Torque-Assisted Magnetic Tunnel Junction-Based Hardware Trojan. Electronics 2022, 11, 1753. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, W.; Lakys, Y.; Klein, J.-O.; Kim, J.-V.; Ravelosona, D.; Chappert, C. Compact Modeling of Perpendicular-Anisotropy CoFeB/MgO Magnetic Tunnel Junctions. IEEE Trans. Electron Devices 2012, 59, 819–826. [Google Scholar] [CrossRef]
- Ahmed, I.; Zhao, Z.; Mankalale, M.G.; Sapatnekar, S.S.; Wang, J.-P.; Kim, C.H. A Comparative Study Between Spin-Transfer-Torque and Spin-Hall-Effect Switching Mechanisms in PMTJ Using SPICE. IEEE J. Explor. Solid-State Comput. Devices Circuits 2017, 3, 74–82. [Google Scholar] [CrossRef]
- Song, J.; Ahmed, I.; Zhao, Z.; Zhang, D.; Sapatnekar, S.S.; Wang, J.-P.; Kim, C.H. Evaluation of Operating Margin and Switching Probability of Voltage-Controlled Magnetic Anisotropy Magnetic Tunnel Junctions. IEEE J. Explor. Solid-State Comput. Devices Circuits 2018, 4, 76–84. [Google Scholar] [CrossRef]
- Kang, W.; Ran, Y.; Zhang, Y.; Lv, W.; Zhao, W. Modeling and Exploration of the Voltage-Controlled Magnetic Anisotropy Effect for the Next-Generation Low-Power and High-Speed MRAM Applications. IEEE Trans. Nanotechnol. 2017, 16, 387–395. [Google Scholar] [CrossRef]
- Shreya, S.; Kaushik, B.K. Modeling of Voltage-Controlled Spin–Orbit Torque MRAM for Multilevel Switching Application. IEEE Trans. Electron Devices 2020, 67, 90–98. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, H.; Wang, M.; Cai, W.; Zhu, D.; Klein, J.O.; Zhao, W. Proposal of Toggle Spin Torques Magnetic RAM for Ultrafast Computing. IEEE Electron Device Lett. 2019, 40, 726–729. [Google Scholar] [CrossRef]
- Lee, S.-W.; Lee, K.-J. Emerging three-terminal magnetic memory devices. Proc. IEEE 2016, 104, 1831–1843. [Google Scholar] [CrossRef]
- Lee, H.; Lee, A.; Wang, S.; Ebrahimi, F.; Gupta, P.; Amiri, P.K.; Wang, K.L. Analysis and compact modeling of magnetic tunnel junctions utilizing voltage-controlled magnetic anisotropy. IEEE Trans. Magn. 2018, 54, 4400209. [Google Scholar] [CrossRef]
- Bosio, A.; Virazel, A.; Girard, P.; Barbareschi, M. Approximate computing: Design & test for integrated circuits. In Proceedings of the 2017 18th IEEE Latin American Test Symposium (LATS), Bogota, Colombia, 13–15 March 2017. [Google Scholar]
- Mittal, S. A survey of techniques for approximate computing. ACM Comput. Surv. 2016, 48, 62. [Google Scholar] [CrossRef]
- Zeinali, B.; Karsinos, D.; Moradi, F. Progressive Scaled STT-RAM for Approximate Computing in Multimedia Applications. IEEE Trans. Circuits Syst. II Express Briefs 2018, 65, 938–942. [Google Scholar] [CrossRef]
- Jayakumar, H.; Raha, A.; Kim, Y.; Sutar, S.; Lee, W.S.; Raghunathan, V. Energy-efficient system design for IoT devices. In Proceedings of the 2016 21st Asia and South Pacific Design Automation Conference (ASP-DAC), Macao, Macao, 25–28 January 2016; pp. 298–301. [Google Scholar]
- Wang, C.; Wang, Z.; Wang, G.; Zhang, Y.; Zhao, W. Design of an Area-Efficient Computing in Memory Platform Based on STT-MRAM. IEEE Trans. Magn. 2021, 57, 3400504. [Google Scholar] [CrossRef]
- Kang, W.; Chang, L.; Zhang, Y.; Zhao, W. Voltage-controlled MRAM for working memory: Perspectives and challenges. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Lausanne, Switzerland, 27–31 March 2017; pp. 542–547. [Google Scholar]
- Gulafshan; Khan, M.A.; Hasan, M. Design of High Speed, Energy, and Area Efficient Spin-Based Hybrid MTJ/CMOS and CMOS Only Approximate Adders. IEEE Trans. Magn. 2022, 58, 3400608. [Google Scholar] [CrossRef]
Control Signal | Operation |
---|---|
Ci = 0 | AND/NAND |
Ci = 1 | OR/NOR |
A = B | Read/NOT |
Ci = Cinput | Approximate Adder |
A | B | Ci | Rleft | Rright | Asum | Cout |
---|---|---|---|---|---|---|
0 | 0 | 0 | RH‖RH‖RH | RL‖RL | 1 | 0 |
0 | 0 | 1 | RH‖RH‖RL | 1 | 0 | |
0 | 1 | 0 | RH‖RL‖RH | 1 | 0 | |
0 | 1 | 1 | RH‖RL‖RL | 0 | 1 | |
1 | 0 | 0 | RL‖RH‖RH | 1 | 0 | |
1 | 0 | 1 | RL‖RH‖RL | 0 | 1 | |
1 | 1 | 0 | RL‖RL‖RH | 0 | 1 | |
1 | 1 | 1 | RL‖RL‖RL | 0 | 1 |
CKT1 [18] | CKT2 [35] | Proposed Circuit | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Parameter | Read/NOT | AND/NAND | OR/NOR | Read/NOT | AND/NAND | OR/NOR | Sum/Cout | Read/NOT | AND/NAND | OR/NOR | ASum/Cout |
Sensing delay (ps) | 20.35/27.21 | 27.35/27.45 | 27.57/27.20 | 103.57/95.09 | 73.43/63.92 | 84.63/73.88 | 84.27/73.81 | 31.27/25.90 | 30.43/37.46 | 31.36/39.58 | 37.84/31.35 |
Sensing energy (aJ) | 13.00 | 13.36 | 13.35 | 26.68 | 28.60 | 28.29 | 56.39 | 12.87 | 12.78 | 13.48 | 13.11 |
Sensing power (10 W) | 26.01 | 26.72 | 26.70 | 53.37 | 57.21 | 56.58 | 112.78 | 25.74 | 25.57 | 26.97 | 26.23 |
Switching delay (ns) | 0.975 | 1.00 | 1.00 | 0.899 | 0.948 | 1.031 | 0.910 | 0.979 | 0.900 | 0.906 | 0.900 |
Switching energy (aJ) | 0.93 | 3.58 | 3.25 | 89.14 | 85.97 | 98.37 | 238.74 | 2.39 | 3.099 | 2.281 | 3.923 |
EDP (1 × 10) | 26.45 | 36.53 | 36.80 | 276.32 | 210.00 | 239.41 | 475.19 | 40.2 | 47.87 | 53.35 | 49.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gulafshan, G.; Amara, S.; Kumar, R.; Khan, D.; Fariborzi, H.; Massoud, Y. Bitwise Logical Operations in VCMA-MRAM. Electronics 2022, 11, 2805. https://doi.org/10.3390/electronics11182805
Gulafshan G, Amara S, Kumar R, Khan D, Fariborzi H, Massoud Y. Bitwise Logical Operations in VCMA-MRAM. Electronics. 2022; 11(18):2805. https://doi.org/10.3390/electronics11182805
Chicago/Turabian StyleGulafshan, Gulafshan, Selma Amara, Rajat Kumar, Danial Khan, Hossein Fariborzi, and Yehia Massoud. 2022. "Bitwise Logical Operations in VCMA-MRAM" Electronics 11, no. 18: 2805. https://doi.org/10.3390/electronics11182805
APA StyleGulafshan, G., Amara, S., Kumar, R., Khan, D., Fariborzi, H., & Massoud, Y. (2022). Bitwise Logical Operations in VCMA-MRAM. Electronics, 11(18), 2805. https://doi.org/10.3390/electronics11182805