Assessment of Exposure to Time-Varying Magnetic Fields in Magnetic Resonance Environments Using Pocket Dosimeters
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Conflicts of Interest
References
- McRobbie, D.W.; Moore, E.A.; Graves, M.J.; Prince, M.R. MRI from Picture to Proton; Cambridge University Press: Cambridge, UK, 2017; ISBN 9781107706958. [Google Scholar]
- McRobbie, D.W. Essentials of MRI Safety; Wiley-Blackwell: Hoboken, NJ, USA, 2020; ISBN 9781119557173. [Google Scholar]
- ICNIRP Guidelines for limiting exposure to electric fields induced by and by time-varying magnetic fields below 1 Hz. Health Phys. 2014, 106, 418–425. [CrossRef] [PubMed]
- ICNIRP Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz). Health Phys. 2010, 99, 818–836. [CrossRef]
- European Parliament and Council of the European Union Directive 2013/35/EC on the Minimum Health and Safety Requirements Regarding the Exposure of Workers to the Risks Arising from Physical Agents (Electromagnetic Fields). Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:179:0001:0021:EN:PDF (accessed on 28 July 2022).
- European Commission Non-Binding Guide to Good Practice for Implementing Directive 2013/35/EC Volume 2: Case Studies. Available online: https://www.bangor.ac.uk/hss/inflink/documents/EuropeanGuidanceV2CaseStudies.pdf (accessed on 28 July 2022).
- European Commission Non-Binding Guide to Good Practice for Implementing Directive 2013/35/EC Electromagnetic Fields Volume 1: Practical Guide. Available online: https://op.europa.eu/en/publication-detail/-/publication/c6440d35-8775-11e5-b8b7-01aa75ed71a1 (accessed on 28 July 2022).
- Van Nierop, L.E.; Slottje, P.; van Zandvoort, M.J.E.; de Vocht, F.; Kromhout, H. Effects of magnetic stray fields from a 7 Tesla MRI scanner on neurocognition: A double-blind randomised crossover study. Occup. Environ. Med. 2012, 69, 759–766. [Google Scholar] [CrossRef]
- Van Nierop, L.E.; Slottje, P.; Zandvoort, M.V.; Kromhout, H. Simultaneous Exposure to MRI-Related Static and Magnetic Fields Affects Neurocognitive Performance: A Double-Blind Randomized Crossover Study. Magn. Reson. Med. 2015, 849, 840–849. [Google Scholar] [CrossRef] [PubMed]
- Foerster, M.; Thielens, A.; Joseph, W.; Eeftens, M.; Röösli, M. A prospective cohort study of adolescents’ memory performance and individual brain dose of microwave radiation from wireless communication. Environ. Health Perspect. 2018, 126, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, A.; Szostek, A.; Meyer, P.; Nees, F.; Rauschenberg, J.; Gröbner, J.; Gilles, M.; Paslakis, G.; Deuschle, M.; Semmler, W.; et al. Cognition and sensation in very high static magnetic fields: A randomized case-crossover study with different field strengths. Radiology 2013, 266, 236–245. [Google Scholar] [CrossRef]
- Vijayalaxmi; Fatahi, M.; Speck, O. Magnetic resonance imaging (MRI): A review of genetic damage investigations. Mutat. Res.-Rev. Mutat. Res. 2015, 764, 51–63. [Google Scholar] [CrossRef]
- Bongers, S.; Slottje, P.; Kromhout, H. Development of hypertension after long-term exposure to static magnetic fields among workers from a magnetic resonance imaging device manufacturing facility. Environ. Res. 2018, 164, 565–573. [Google Scholar] [CrossRef]
- Huss, A.; Ozdemir, E.; Schaap, K.; Kromhout, H. Occupational exposure to MRI-related magnetic stray fields and sleep quality among MRI–Technicians-A cross-sectional study in the Netherlands. Int. J. Hyg. Environ. Health 2021, 231, 113636. [Google Scholar] [CrossRef]
- Simi, S.; Ballardin, M.; Casella, M.; De Marchi, D.; Hartwig, V.; Giovannetti, G.; Vanello, N.; Gabbriellini, S.; Landini, L.; Lombardi, M. Is the genotoxic effect of magnetic resonance negligible? Low persistence of micronucleus frequency in lymphocytes of individuals after cardiac scan. Mutat. Res.-Fundam. Mol. Mech. Mutagen. 2008, 645, 39–43. [Google Scholar] [CrossRef]
- Hartwig, V.; Virgili, G.; Mattei, F.; Biagini, C.; Romeo, S.; Zeni, O.; Scarfì, R.; Massa, R.; Campanella, F. Occupational exposure to electromagnetic fields in magnetic resonance environment: An update on regulation, exposure assessment techniques, health risk evaluation, and surveillance. Med. Biol. Eng. Comput. 2021, 1, 3. [Google Scholar] [CrossRef]
- Hartwig, V.; Romeo, S.; Zeni, O. Occupational exposure to electromagnetic fields in magnetic resonance environment: Basic aspects and review of exposure assessment approaches. Med. Biol. Eng. Comput. 2018, 56, 531–545. [Google Scholar] [CrossRef]
- Kim, S.J.; Kim, K.A. Safety issues and updates under MR environments. Eur. J. Radiol. 2017, 89, 7–13. [Google Scholar] [CrossRef] [PubMed]
- McRobbie, D.W. Occupational exposure in MRI. Br. J. Radiol. 2012, 85, 293–312. [Google Scholar] [CrossRef] [PubMed]
- Stikova, E. Magnetic resonance imaging safety: Principles and guidelines. Maced. Acad. Sci. Arts Sect. Biol. Med. Sci. 2012, 33, 441–472. [Google Scholar]
- Hansson Mild, K.; Hand, J.; Hietanen, M.; Gowland, P.; Karpowicz, J.; Keevil, S.; Lagroye, I.; van Rongen, E.; Scarfi, M.R.; Wilén, J. Exposure classification of MRI workers in epidemiological studies. Bioelectromagnetics 2013, 34, 81–84. [Google Scholar] [CrossRef]
- ICNIRP Guidelines on Limits of Exposure To Static Magnetic Fields. Health Phys. 2009, 96, 504–514. [CrossRef]
- Hartwig, V.; Sansotta, C.; Morelli, M.S.; Testagrossa, B.; Acri, G. Occupational Exposure Assessment of the Static Magnetic Field Generated by Nuclear Magnetic Resonance Spectroscopy: A Case Study. Int. J. Environ. Res. Public Health 2022, 19, 7674. [Google Scholar] [CrossRef] [PubMed]
- Tecnorad Talete-Tecnorad Personal Dosimetry Service. Available online: http://www.tecnorad.it/campimagnetici.php (accessed on 11 December 2018).
- Crozier, S.; Wilson, S.J.; Gregg, I. Magnetic Field Dosimeter. U.S. Patent No US7936168B2, 3 May 2011. [Google Scholar]
- Fuentes, M.A.; Trakic, A.; Wilson, S.J.; Crozier, S. Analysis and measurements of magnetic field exposures for healthcare workers in selected MR environments. IEEE Trans. Biomed. Eng. 2008, 55, 1355–1364. [Google Scholar] [CrossRef]
- Te.Si.A. TEcnologie e SInergie Applicate Srl, Ma.Fi.S.S.—Dispositivo Rilevatore Campi Magnetici Statici. Available online: https://tesiasrl.it/?page_id=278 (accessed on 28 July 2022).
- Batistatou, E.; Molter, A.; Kromhout, H.; van Tongeren, M.; Crozier, S.; Schaap, K.; Gowland, P.; Keevil, S.F.; de Vocht, F. Personal exposure to static and time-varying magnetic fields during MRI procedures in clinical practice in the UK. Occup. Environ. Med. 2016, 73, 779–786. [Google Scholar] [CrossRef]
- Delmas, A.; Weber, N.; Piffre, J.; Pasquier, C.; Felblinger, J.; Vuissoz, P.A. MRI “exposimetry”: How to analyze, compare and represent worker exposure to static magnetic field? Radiat. Prot. Dosim. 2017, 177, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Hartwig, V.; Virgili, G.; Ferrante Vero, L.F.; De Marchi, D.; Landini, L.; Giovannetti, G. Towards a Personalised and Interactive Assessment of Occupational Exposure To Magnetic Field During Daily Routine in Magnetic Resonance. Radiat. Prot. Dosimetry 2018, 182, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hartwig, V.; Biagini, C.; Marchi, D.D.; Flori, A.; Gabellieri, C.; Virgili, G.; Fabiano, L.; Vero, F.; Landini, L.; Vanello, N.; et al. Analysis, comparison and representation of occupational exposure to a static magnetic field in a 3-T MRI site. Int. J. Occup. Saf. Ergon. 2020, 28, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Acri, G.; Testagrossa, B.; Vermiglio, G. Personal Time-Varying Magnetic Fields Evaluation During Activities in MRI Sites. In Proceedings of the IFMBE Proceedings, Toronto, ON, Canada, 7–12 June 2015; Volume 51, pp. 741–744. [Google Scholar]
- Filice, S.; Rossi, R.; Crisi, G. Assessment of Movement-Induced Time-Varying Magnetic Fields Exposure in Magnetic Resonance Imaging By a Commercial Portable Magnetometer. Radiat. Prot. Dosimetry 2019, 2014, 1–5. [Google Scholar] [CrossRef]
- SCENIHR Potential health effects of exposure to electromagnetic fields (EMF). SCENIHR Rep. 2015, 1–288. [CrossRef]
- Schaap, K.; Christopher-De Vries, Y.; Crozier, S.; Vocht, F.D.; Kromhout, H. Exposure to static and time-varying magnetic fields from working in the static magnetic stray fields of MRI scanners: A comprehensive survey in the Netherlands. Ann. Occup. Hyg. 2014, 58, 1094–1110. [Google Scholar] [CrossRef][Green Version]
- Andreuccetti, D.; Biagi, L.; Burriesci, G.; Cannatà, V.; Contessa, G.M.; Falsaperla, R.; Genovese, E.; Lodato, R.; Lopresto, V.; Merla, C.; et al. Occupational exposure in MR facilities due to movements in the static magnetic field. Med. Phys. 2017, 44, 5988–5996. [Google Scholar] [CrossRef]
- Acri, G.; Testagrossa, B.; Causa, F.; Tripepi, M.G.; Vermiglio, G.; Novario, R.; Pozzi, L.; Quadrelli, G. Evaluation of occupational exposure in magnetic resonance sites. Radiol. Medica 2014, 119, 208–213. [Google Scholar] [CrossRef]
- Glover, P.M.; Cavin, I.; Qian, W.; Bowtell, R.; Gowland, P.A. Magnetic-field-induced vertigo: A theoretical and experimental investigation. Bioelectromagnetics 2007, 28, 349–361. [Google Scholar] [CrossRef]
- Bonutti, F.; Tecchio, M.; Maieron, M.; Trevisan, D.; Negro, C.; Calligaris, F. Measurement of the weighted peak level for occupational exposure to gradient magnetic fields for 1.5 and 3 tesla MRI body scanners. Radiat. Prot. Dosimetry 2016, 168, 358–364. [Google Scholar] [CrossRef]
- Mittendorff, L.; Young, A.; Sim, J. A narrative review of current and emerging MRI safety issues: What every MRI technologist (radiographer) needs to know. J. Med. Radiat. Sci. 2022, 69, 250–260. [Google Scholar] [CrossRef] [PubMed]
- Groebner, J.; Umathum, R.; Bock, M.; Krafft, A.J.; Semmler, W.; Rauschenberg, J. MR safety: Simultaneous B0, df/dt, and dB/dt measurements on MR-workers up to 7T. MAGMA 2011, 24, 315–322. [Google Scholar] [CrossRef] [PubMed]
Bpeak to peak (T) | EIpeak (V/m) | dB/dt peak (T/s) | ΔB (T) | WPBR | WPAL | |
---|---|---|---|---|---|---|
Maintenance task (technician) | 2.430 | 0.263 | 1.646 | 2.524 | 0.193 | 0.514 |
fMRI task (researcher) | 0.416 | 0.027 | 0.171 | 0.337 | 0.009 | 0.020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acri, G.; Anfuso, C.; Vermiglio, G.; Hartwig, V. Assessment of Exposure to Time-Varying Magnetic Fields in Magnetic Resonance Environments Using Pocket Dosimeters. Electronics 2022, 11, 2796. https://doi.org/10.3390/electronics11172796
Acri G, Anfuso C, Vermiglio G, Hartwig V. Assessment of Exposure to Time-Varying Magnetic Fields in Magnetic Resonance Environments Using Pocket Dosimeters. Electronics. 2022; 11(17):2796. https://doi.org/10.3390/electronics11172796
Chicago/Turabian StyleAcri, Giuseppe, Carmelo Anfuso, Giuseppe Vermiglio, and Valentina Hartwig. 2022. "Assessment of Exposure to Time-Varying Magnetic Fields in Magnetic Resonance Environments Using Pocket Dosimeters" Electronics 11, no. 17: 2796. https://doi.org/10.3390/electronics11172796
APA StyleAcri, G., Anfuso, C., Vermiglio, G., & Hartwig, V. (2022). Assessment of Exposure to Time-Varying Magnetic Fields in Magnetic Resonance Environments Using Pocket Dosimeters. Electronics, 11(17), 2796. https://doi.org/10.3390/electronics11172796