# Wavelet-Transform-Based Sparse Code Multiple Access for Power Line Communication

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

#### 1.1. Contribution

- In this paper, the authors suggest DWT-SCMA for the PLC system. Instead of WPT, DWT is adopted due to its sparse structure.
- FFT-SCMA uses MC transmission to reduce multipath fading effects and IUI, although it still has Intercarrier Interference (ICI). The pulse-shaping with DWT instead of FFT can lower ICI, resulting in a higher Signal-to-Interference-Plus-Noise Ratio (SINR).
- In this work, a mathematical expression for SINR is derived for FFT-SCMA and DWT-SCMA. The impact of both techniques on noise and interference is demonstrated through mathematical equations.
- The authors have computed numerical results of FFT-SCMA and DWT-SCMA by taking the PLC channel into consideration. SINR, throughput, PAPR, and Symbol-Error-Rate (SER) are used to evaluate performance in the PLC channel, revealing that DWT-SCMA outperforms FFT-SCMA.

#### 1.2. Organization

## 2. System Model Description

#### 2.1. Channel Response of PLC

#### 2.2. SCMA System Model for PLC

#### 2.3. Decoding for SCMA

#### 2.4. Interuser Interference in PLC-SCMA

#### 2.5. FFT-SCMA System Model for PLC

#### 2.6. DWT-SCMA System Model for PLC

#### 2.7. Capacity

#### 2.8. Theoretical Symbol-Error-Rate

#### 2.9. Peak-to-Average-Power Ratio

## 3. Result Discussion

#### 3.1. SINR Analysis

#### 3.2. Capacity Analysis

#### 3.3. PAPR Improvement

#### 3.4. Comparative Analysis of SER

#### 3.5. Computational Complexity

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Lopez, G.; Matanza, J.; De La Vega, D.; Castro, M.; Arrinda, A.; Moreno, J.I.; Sendin, A. The Role of Power Line Communications in the Smart Grid Revisited: Applications, Challenges, and Research Initiatives. IEEE Access
**2019**, 7, 117346–117368. [Google Scholar] [CrossRef] - Rabie, K.M.; Adebisi, B.; Yousif, E.H.; Gacanin, H.; Tonello, A.M. A Comparison between Orthogonal and Non-Orthogonal Multiple Access in Cooperative Relaying Power Line Communication Systems. IEEE Access
**2017**, 5, 10118–10129. [Google Scholar] [CrossRef] - Dai, L.; Wang, B.; Ding, Z.; Wang, Z.; Chen, S.; Hanzo, L. A Survey of Non-Orthogonal Multiple Access for 5G. IEEE Commun. Surv. Tutor.
**2018**, 20, 2294–2323. [Google Scholar] [CrossRef] [Green Version] - Cai, Y.; Qin, Z.; Cui, F.; Li, G.Y.; McCann, J.A. Modulation and Multiple Access for 5G Networks. IEEE Commun. Surv. Tutor.
**2018**, 20, 629–646. [Google Scholar] [CrossRef] [Green Version] - Sheikh, S.M.; Asif, H.M.; Raahemifar, K.; Al-Turjman, F. Time Difference of Arrival Based Indoor Positioning System Using Visible Light Communication. IEEE Access
**2021**, 9, 52113–52124. [Google Scholar] [CrossRef] - Zhang, Y.; Wang, X.; Wang, D.; Zhang, Y.; Lan, Y. Analysis and Design of SCMA-Based Hybrid Unicast-Multicast Relay-Assisted Networks. Sensors
**2019**, 19, 329. [Google Scholar] [CrossRef] [Green Version] - Abebe, A.T.; Kang, C.G. Multiple Codebook-Based Non-Orthogonal Multiple Access. IEEE Wireless Commun. Lett.
**2020**, 9, 683–687. [Google Scholar] [CrossRef] - Moltafet, M.; Yamchi, N.M.; Javan, M.R.; Azmi, P. Comparison Study Between PD-NOMA and SCMA. IEEE Trans. Veh. Technol.
**2017**, 67, 1830–1834. [Google Scholar] [CrossRef] [Green Version] - Yadav, A.; Quan, C.; Varshney, P.K.; Poor, H.V. On Performance Comparison of Multi-Antenna HD-NOMA, SCMA, and PD-NOMA Schemes. IEEE Wireless Commun. Lett.
**2021**, 10, 715–719. [Google Scholar] [CrossRef] - Ahiadormey, R.K.; Anokye, P.; Lee, K.J. Cooperative Non-Orthogonal Multiple Access Over Log-Normal Power Line Communication Channels. Electronics
**2019**, 8, 1254. [Google Scholar] [CrossRef] [Green Version] - Rabie, K.M.; Adebisi, B.; Tonello, A.M.; Yarkan, S.; Ijaz, M. Two-Stage Non-Orthogonal Multiple Access over Power Line Communication Channels. IEEE Access
**2018**, 6, 17368–17376. [Google Scholar] [CrossRef] - Naz, A.; Baig, S.; Asif, H.M. Non Orthogonal Multiple Access (NOMA) for Broadband Communication in Smart Grids Using VLC and PLC. Optik
**2019**, 188, 162–171. [Google Scholar] [CrossRef] - Nikopour, H.; Baligh, H. Sparse Code Multiple Access. In PProceedings of the 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), London, UK, , 8–11 September 2013; pp. 332–336. [Google Scholar]
- Chen, Y.M.; Chen, J.W. On the Design of Near-Optimal Sparse Code Multiple Access Codebooks. IEEE Trans. Commun.
**2020**, 68, 2950–2962. [Google Scholar] [CrossRef] - Bao, J.; Ma, Z.; Xiao, M.; Tsiftsis, T.A.; Zhu, Z. Bit-Interleaved Coded SCMA With Iterative Multiuser Detection: Multidimensional Constellations Design. IEEE Trans. Commun.
**2018**, 66, 5292–5304. [Google Scholar] [CrossRef] - Dong, C.; Gao, G.; Niu, K.; Lin, J. An efficient SCMA Codebook Optimization Algorithm Based on Mutual Information Maximization. Wirel. Commun. Mob. Comput.
**2018**, 2018, 8910907. [Google Scholar] [CrossRef] [Green Version] - Liu, Y.; Xiang, L.; Yang, L.L.; Hanzo, L. Space-Time Coded Generalized Spatial Modulation for Sparse Code Division Multiple Access. IEEE Trans. Wireless Commun.
**2021**, 20, 5359–5372. [Google Scholar] [CrossRef] - Huang, C.; Su, B.; Lin, T.; Huang, Y. Downlink SCMA Codebook Design with Low Error Rate by Maximizing Minimum Euclidean Distance of Superimposed Codewords. IEEE Trans. Veh. Technol.
**2022**, 71, 5231–5245. [Google Scholar] [CrossRef] - Chege, S.K.; Walingo, T. Multiplexing Capacity of Hybrid PD-SCMA Heterogeneous Networks. IEEE Trans. Veh. Technol.
**2022**, 71, 6424–6438. [Google Scholar] [CrossRef] - Bai, T.; Zhang, H.; Wang, J.; Xu, C.; Elkashlan, M.; Nallanathan, A.; Hanzo, L. Fifty Years of Noise Modeling and Mitigation in Power-Line Communications. IEEE Commun. Surv. Tutor.
**2021**, 23, 41–69. [Google Scholar] [CrossRef] - Wang, R.; Sun, Q.; Hu, W.; Li, Y.; Ma, D.; Wang, P. SoC-Based Droop Coefficients Stability Region Analysis of the Battery for Stand-Alone Supply Systems with Constant Power Loads. IEEE Trans. Power Electron.
**2021**, 36, 7866–7879. [Google Scholar] [CrossRef] - Barmada, S.; Musolino, A.; Raugi, M.; Rizzo, R.; Tucci, M. A Wavelet Based Method for the Analysis of Impulsive Noise Due to Switch Commutations in Power Line Communication (PLC) Systems. IEEE Trans. Smart Grid
**2011**, 2, 92–101. [Google Scholar] [CrossRef] - Strang, G. Wavelet Transforms Versus Fourier Transforms. Bull. Am. Math. Soc.
**1993**, 28, 288–305. [Google Scholar] [CrossRef] [Green Version] - Ahmad, M.; Shin, S.Y. Massive MIMO NOMA With Wavelet Pulse Shaping to Minimize Undesired Channel Interference. ICT Express 2022, in press. [CrossRef]
- Lakshmanan, M.K.; Nikookar, H. A Review of Wavelets for Digital Wireless Communication. Wirel. Pers. Commun.
**2006**, 37, 387–420. [Google Scholar] [CrossRef] - Baig, S.; Muhammad Asif, H.; Umer, T.; Mumtaz, S.; Shafiq, M.; Choi, J.G. High Data Rate Discrete Wavelet Transform-Based PLC-VLC Design for 5G Communication Systems. IEEE Access
**2018**, 6, 52490–52499. [Google Scholar] [CrossRef] - Chien, Y.R.; Yu, H.C. Mitigating Impulsive Noise for Wavelet-OFDM Powerline Communication. Energies
**2019**, 12, 1567. [Google Scholar] [CrossRef] [Green Version] - Baig, S.; Ahmad, M.; Asif, H.M.; Shehzad, M.N.; Jaffery, M.H. Dual PHY Layer for Non-Orthogonal Multiple Access Transceiver in 5G Networks. IEEE Access
**2018**, 6, 3130–3139. [Google Scholar] [CrossRef] - Yang, L.; Lin, X.; Ma, X.; Li, S. Iterative Clipping Noise Elimination of Clipped and Filtered SCMA-OFDM System. IEEE Access
**2018**, 6, 54427–54434. [Google Scholar] [CrossRef] - Hosseini, H.; Anpalagan, A.; Raahemifar, K.; Erkucuk, S. Wavelet-Based Cognitive SCMA System for mmWave 5G Communication Networks. IET Commun.
**2017**, 11, 831–836. [Google Scholar] [CrossRef] - Chafii, M.; Palicot, J.; Gribonval, R.; Bader, F. Adaptive Wavelet Packet Modulation. IEEE Trans. Commun.
**2018**, 66, 2947–2957. [Google Scholar] [CrossRef] - Khan, A.; Shin, S.Y. Wavelet OFDM-Based Non-Orthogonal Multiple Access Downlink Transceiver for Future Radio Access. IETE Tech. Rev.
**2018**, 35, 17–27. [Google Scholar] [CrossRef] - Baig, S.; Ali, U.; Asif, H.M.; Khan, A.A.; Mumtaz, S. Closed-Form BER Expression for Fourier and Wavelet Transform-Based Pulse-Shaped Data in Downlink NOMA. IEEE Commun. Lett.
**2019**, 23, 592–595. [Google Scholar] [CrossRef] - Zimmermann, M.; Dostert, K. A Multipath Model for the Powerline Channel. IEEE Trans. Commun.
**2002**, 50, 553–559. [Google Scholar] [CrossRef] [Green Version] - Gotz, M.; Rapp, M.; Dostert, K. Power Line Channel Characteristics and Their Effect on Communication System Design. IEEE Commun. Mag.
**2004**, 42, 78–86. [Google Scholar] [CrossRef] - Huawei. The 1st 5G Algorithm Innovation Competition SCMA; Altera University Program. 2015. Available online: http://www.innovateasia.com/5g/en/gp2.html (accessed on 1 August 2022).
- Lai, K.; Wen, L.; Lei, J.; Zhong, J.; Chen, G.; Zhou, X. Simplified Sparse Code Multiple Access Receiver by Using Truncated Messages. IET Commun.
**2018**, 12, 1937–1945. [Google Scholar] [CrossRef] - Dai, J.; Niu, K.; Dong, C.; Lin, J. Improved Message Passing Algorithms for Sparse Code Multiple Access. IEEE Trans. Veh. Technol.
**2017**, 66, 9986–9999. [Google Scholar] [CrossRef] - Sfeir, E.; Mitra, R.; Kaddoum, G.; Bhatia, V. Comparative Analytical Study of SCMA Detection Methods for PA Nonlinearity Mitigation. Sensors
**2021**, 21, 8408. [Google Scholar] [CrossRef] - Li, S.; Feng, Y.; Sun, Y.; Xia, Z. A Low-Complexity Detector for Uplink SCMA by Exploiting Dynamical Superior User Removal Algorithm. Electronics
**2022**, 11, 1020. [Google Scholar] [CrossRef] - Cheng, H.; Zhang, C.; Huang, Y.; Yang, L. Efficient Message Passing Receivers for Downlink MIMO-SCMA Systems. IEEE Trans. Veh. Technol.
**2022**, 71, 5073–5086. [Google Scholar] [CrossRef] - Khan, A.; Khan, S.; Baig, S.; Asif, H.M.; Shin, S.Y. Wavelet OFDM With Overlap FDE for Non-Gaussian Channels in Precoded NOMA Based Systems. Future Gener. Comput. Syst.
**2019**, 97, 165–179. [Google Scholar] [CrossRef] - Baig, S.; Gohar, N. A Discrete Multitone Transceiver at the Heart of the PHY Layer of an In-home Power Line Communication Local Area Network. IEEE Commun. Mag.
**2003**, 41, 48–53. [Google Scholar] [CrossRef]

**Figure 9.**Average user capacity vs. ${E}_{b}/{N}_{o}$, a comparative analysis among PLC-SCMA and FFT/DWT-SCMA.

Multiaccess Technique | Interuser Interference |
---|---|

PLC-SCMA | $\left|H\right|=0.2263$ dB |

FFT-SCMA | $|{H}_{f}|=0.0230$ dB |

DWT-SCMA | $|{H}_{w}|=0.0093$ dB |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Sarwar, M.S.; Baig, S.; Asif, H.M.; Raahemifar, K.; Al-Busaidi, S.
Wavelet-Transform-Based Sparse Code Multiple Access for Power Line Communication. *Electronics* **2022**, *11*, 2618.
https://doi.org/10.3390/electronics11162618

**AMA Style**

Sarwar MS, Baig S, Asif HM, Raahemifar K, Al-Busaidi S.
Wavelet-Transform-Based Sparse Code Multiple Access for Power Line Communication. *Electronics*. 2022; 11(16):2618.
https://doi.org/10.3390/electronics11162618

**Chicago/Turabian Style**

Sarwar, Muhammad Sajid, Sobia Baig, Hafiz M. Asif, Kaamran Raahemifar, and Samir Al-Busaidi.
2022. "Wavelet-Transform-Based Sparse Code Multiple Access for Power Line Communication" *Electronics* 11, no. 16: 2618.
https://doi.org/10.3390/electronics11162618