A Coaxial and Coplanar Wireless Slipring for Multi-Axis Robot Manipulators
Abstract
:1. Introduction
2. System Structure and Circuit Analysis
2.1. Mechanical Structure of the Proposed Wireless Slipring
2.2. Circuit Analysis
3. Design and Experimental Evaluations
3.1. System Design
3.2. Experimental Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brown, L.; Kuhlmann-Wilsdorf, D.; Jesser, W. Testing and Evaluation of Metal Fiber Brush Operation on Slip Rings and Commutators. IEEE Trans. Compon. Packag. Technol. 2008, 31, 485–494. [Google Scholar] [CrossRef]
- Patil, D.; McDonough, M.K.; Miller, J.M.; Fahimi, B.; Balsara, P.T. Wireless Power Transfer for Vehicular Applications: Overview and Challenges. IEEE Trans. Transp. Electrif. 2018, 4, 3–37. [Google Scholar] [CrossRef]
- Dai, J.; Ludois, D.C. A Survey of Wireless Power Transfer and a Critical Comparison of Inductive and Capacitive Coupling for Small Gap Applications. IEEE Trans. Power Electron. 2015, 30, 6017–6029. [Google Scholar] [CrossRef]
- Hui, S.Y.R.; Zhong, W.; Lee, C.K. A Critical Review of Recent Progress in Mid-Range Wireless Power Transfer. IEEE Trans. Power Electron. 2014, 29, 4500–4511. [Google Scholar] [CrossRef] [Green Version]
- Jayalath, S.; Khan, A. Design, Challenges, and Trends of Inductive Power Transfer Couplers for Electric Vehicles: A Review. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 6196–6218. [Google Scholar] [CrossRef]
- Hagen, S.; Tisler, M.; Dai, J.; Brown, I.P.; Ludois, D.C. Use of the Rotating Rectifier Board as a Capacitive Power Coupler for Brushless Wound Field Synchronous Machines. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 170–183. [Google Scholar] [CrossRef]
- Wu, X.; Su, Y.; Hu, A.P.; Qing, X.; Hou, X. Multiobjective Parameter Optimization of a Four-Plate Capacitive Power Transfer System. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 2328–2342. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Huang, L.; Chen, C. Design and implementation of contactless maglev rotating power transfer system with new rotary inductive coupled structure. In Proceedings of the 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), Hefei, China, 22–26 May 2016; pp. 2442–2449. [Google Scholar]
- Abou Houran, M.; Li, X.; Yang, X.; Chen, W.; Hassan, A.; Samizadeh, M.; Karami, B. Design of Coaxial WPT Coils for Linear and Rotational Movement-Based Applications. In Proceedings of the 2020 IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia), Nanjing, China, 29 November–2 December 2020; pp. 3288–3292. [Google Scholar]
- He, G.; Chen, Q.; Ren, X.; Wong, S.; Zhang, Z. Modeling and Design of Contactless Sliprings for Rotary Applications. IEEE Trans. Ind. Electron. 2019, 66, 4130–4140. [Google Scholar] [CrossRef]
- Robertson, D.; Bhargava, K.; Mishriki, F.; Ren, S.S.; Walton, R.; Lecias, E.S. Contactless Power Transfer System. U.S. Patent No. 9,646,763, 9 May 2017. [Google Scholar]
- Zhang, Y.; Yang, J.; Jiang, D.; Li, D.; Qu, R. Design, manufacture, and Test of a Rotary Transformer for Contactless Power Transfer System. IEEE Trans. Magn. 2021, 58, 8400206. [Google Scholar] [CrossRef]
- Abdolkhani, A.; Hu, A.P. Face to Face Through-hole Contactless Slipring System for Rotary Applications. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 2013, 2, 4277–4286. [Google Scholar]
- Abdolkhani, A.; Hu, A.P. Improved Coupling Design of Contactless Slipring for Rotary Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 288–295. [Google Scholar] [CrossRef]
- Song, K.; Ma, B.; Yang, G.; Jiang, J.; Wei, R.; Zhang, H.; Zhu, C. A Rotation-Lightweight Wireless Power Transfer System for Solar Wing Driving. IEEE Trans. Power Electron. 2019, 34, 8816–8830. [Google Scholar] [CrossRef]
- Abdolkhani, A.; Hu, A.P.; Nair, N.C. A Double Stator Through-hole Type Contactless Slipring for Rotary Wireless Power Transfer Applications. IEEE Trans. Energy Convers. 2014, 29, 426–434. [Google Scholar]
- Raminosoa, T.; Wiles, R.H.; Wilkins, J. Novel Rotary Transformer Topology With Improved Power Transfer Capability for High-Speed Applications. IEEE Trans. Ind. Appl. 2020, 56, 277–286. [Google Scholar] [CrossRef]
Specification | Symbol | Measured Value | |
---|---|---|---|
Stationary primary | Self-inductance | Lp | 21.65 μH |
Quality factor | Qp | 800 | |
Outer diameter | Dout,p | 63 mm | |
Inner diameter | din,p | 35 mm | |
Coil turns | Np | 11 | |
Rotor secondary | Self-inductance | Ls | 6.29 μH |
Quality factor | Qs | 600 | |
Outer diameter | Dout,s | 30 mm | |
Inner diameter | din,s | 5 mm | |
Coil turns | Ns | 10 | |
Coupling coefficient | k | 0.23 | |
Operating frequency | f | 800 kHz | |
Rated output power | Pout | 100 W | |
Input DC voltage | Vdc | 48 V | |
Output DC voltage | Vout | 48 V |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chai, L.; Song, C.; Lu, J. A Coaxial and Coplanar Wireless Slipring for Multi-Axis Robot Manipulators. Electronics 2022, 11, 2352. https://doi.org/10.3390/electronics11152352
Chai L, Song C, Lu J. A Coaxial and Coplanar Wireless Slipring for Multi-Axis Robot Manipulators. Electronics. 2022; 11(15):2352. https://doi.org/10.3390/electronics11152352
Chicago/Turabian StyleChai, Lin, Chun Song, and Jianghua Lu. 2022. "A Coaxial and Coplanar Wireless Slipring for Multi-Axis Robot Manipulators" Electronics 11, no. 15: 2352. https://doi.org/10.3390/electronics11152352