An Intelligent Breast Ultrasound System for Diagnosis and 3D Visualization
Abstract
:1. Introduction
2. Methods
2.1. 3D-Based Breast Ultrasound System
2.2. Ensemble Neural Network
2.3. Locator
2.4. Model Preparation and Report Generation
3. Experiment Results and Discussion
3.1. Ensemble Network
3.2. Breast Lesion 3D Visualization
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, H.-D.; Shan, J.; Ju, W.; Guo, Y.; Zhang, L. Automated breast cancer detection and classification using ultrasound images: A survey. Pattern Recognit. 2010, 43, 299–317. [Google Scholar] [CrossRef] [Green Version]
- Raafat, S.S.; Ezzat, S.Z.; Khachaba, Y.A.; Aboul-Nasr, L.A. Autologous mastopexy and autoaugmention of the breast. Plast. Reconstr. Surg. Glob. Open 2020, 8, e3126. [Google Scholar] [CrossRef] [PubMed]
- Jeng, C.-J.; Hou, M.-F.; Liu, H.-Y.; Wang, L.-R.; Chen, J.-J. Construction of an integrated sexual function questionnaire for women with breast cancer. Taiwan. J. Obstet. Gynecol. 2020, 59, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Q.T.; Tsien, R.Y. Fluorescence-guided surgery with live molecular navigation—A new cutting edge. Nat. Rev. Cancer 2013, 13, 653–662. [Google Scholar] [CrossRef] [PubMed]
- Tu, C.-C.; Hsu, P.-K. Global development and current evidence of uniportal thoracoscopic surgery. J. Thorac. Dis. 2016, 8, S308. [Google Scholar] [PubMed]
- Bezerra, L.; Ribeiro, R.; Lyra, P.; Lima, R. An empirical correlation to estimate thermal properties of the breast and of the breast nodule using thermographic images and optimization techniques. Int. J. Heat Mass Transf. 2020, 149, 119215. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X.; Lin, X.; Dong, L.; Zhang, S.; Zhang, X.; Sun, D.; Yuan, K. Ultrasonic diagnosis of breast nodules using modified faster R-CNN. Ultrason. Imaging 2019, 41, 353–367. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Jong, T.; Haden, A. Pruritic Nodules on the Breast. Cutis 2019, 103, E3–E5. [Google Scholar] [PubMed]
- Froelich, M.F.; Kaiser, C.G. Cost-effectiveness of MR-mammography as a solitary imaging technique in women with dense breasts: An economic evaluation of the prospective TK-Study. Eur. Radiol. 2021, 31, 967–974. [Google Scholar] [CrossRef]
- Legrand, J.; Kirchgesner, T.; Sokolova, T.; Berg, B.V.; Durez, P. Early clinical response and long-term radiographic progression in recent-onset rheumatoid arthritis: Clinical remission within six months remains the treatment target. Jt. Bone Spine 2019, 86, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Van Zelst, J.C.; Platel, B.; Karssemeijer, N.; Mann, R.M. Multiplanar reconstructions of 3D automated breast ultrasound improve lesion differentiation by radiologists. Acad. Radiol. 2015, 22, 1489–1496. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.; Chen, M.; Liu, C. DsUnet: A new network structure for detection and segmentation of ultrasound breast lesions. J. Med. Imaging Health Inform. 2020, 10, 661–666. [Google Scholar] [CrossRef]
- Graziano, L.; Barbosa, P.N.V.P.; Travesso, D.J.; de Lima Tourinho, T.; Tyng, C.J.; Bitencourt, A.G.V. CT-guided biopsy of breast lesions: When should it be considered? Breast J. 2019, 25, 1050–1052. [Google Scholar] [CrossRef]
- Rashmi, R.; Prasad, K.; Udupa, C.B.K.; Shwetha, V. A comparative evaluation of texture features for semantic segmentation of breast histopathological images. IEEE Access 2020, 8, 64331–64346. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Lu, Y.; Li, J.; Zhao, X.; Li, J.; Feng, J.; Fan, E. Breast cancer research and treatment reconstruction of unilateral breast structure using three-dimensional ultrasound imaging to assess breast neoplasm. Breast Cancer Res. Treat. 2019, 176, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1492–1500. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2012; Volume 25. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning transferable architectures for scalable image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8697–8710. [Google Scholar]
- Al-Dhabyani, W.; Gomaa, M.; Khaled, H.; Fahmy, A. Dataset of breast ultrasound images. Data Brief 2020, 28, 104863. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhou, K.; Zha, M.; Qu, X.; Guo, X.; Chen, H.; Wang, Z.; Xiao, R. An effective deep neural network for lung lesions segmentation from COVID-19 CT images. IEEE Trans. Ind. Inform. 2021, 17, 6528–6538. [Google Scholar] [CrossRef]
- Chen, C.; Xiao, R.; Zhang, T.; Lu, Y.; Guo, X.; Wang, J.; Chen, H.; Wang, Z. Pathological lung segmentation in chest CT images based on improved random walker. Comput. Methods Programs Biomed. 2021, 200, 105864. [Google Scholar] [CrossRef] [PubMed]
Neural Network | Accuracy | Recall | F1 Score | AUC |
---|---|---|---|---|
DenseNet | 0.7752 | 0.5952 | 0.6329 | 0.8328 |
GoogLeNet | 0.8294 | 0.7381 | 0.7381 | 0.8760 |
AlexNet | 0.7984 | 0.7143 | 0.6977 | 0.8410 |
ResNet | 0.7597 | 0.5238 | 0.5867 | 0.8240 |
MobileNet | 0.7287 | 0.4524 | 0.5205 | 0.7466 |
NasNet | 0.8062 | 0.6190 | 0.6753 | 0.8481 |
ResNeXt | 0.7829 | 0.5952 | 0.6410 | 0.8106 |
VGG16 | 0.8372 | 0.6905 | 0.7342 | 0.8547 |
(NasNet, AlexNet, DenseNet) | 0.8295 | 0.6667 | 0.7179 | 0.8719 |
(NasNet, GoogLeNet, AlexNet) | 0.8450 | 0.7381 | 0.7561 | 0.8790 |
(VGG16, GoogLeNet, NasNet) | 0.8527 | 0.6905 | 0.7532 | 0.8831 |
(VGG16, NasNet, DenseNet) | 0.8992 | 0.7619 | 0.8312 | 0.8711 |
Data | Characterization Information Description |
---|---|
Subject 1 | Medium breast shape; upper right half, 5 × 15 × 23 mm, smooth, lengthwise, clear and complete, and position (51 mm, 80°, 10 mm). Upper left half, 46 × 35 × 63 mm, burr, horizontal length, rich blood supply, position (0 mm, 0°, 30 mm). |
Subject 2 | Medium breast shape, upper right side, 42 × 31 × 44 mm, burr, horizontal and long, clear and complete border, lack of blood supply, position (0 mm, 0°, 27 mm). The upper left half, 50 × 58 × 60 mm, burr, rich blood supply, clear and complete border, position (0 mm, 0°, 35 mm). |
Subject 3 | Medium breast shape, upper right side, 41 × 30 × 39 mm, burr, lengthwise, clear and complete, rich blood supply, location (26 mm, 340°, 20 mm). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Chen, Y.; Chen, C.; Li, J.; He, K.; Xiao, R. An Intelligent Breast Ultrasound System for Diagnosis and 3D Visualization. Electronics 2022, 11, 2116. https://doi.org/10.3390/electronics11142116
Lu Y, Chen Y, Chen C, Li J, He K, Xiao R. An Intelligent Breast Ultrasound System for Diagnosis and 3D Visualization. Electronics. 2022; 11(14):2116. https://doi.org/10.3390/electronics11142116
Chicago/Turabian StyleLu, Yuanyuan, Yunqing Chen, Cheng Chen, Junlai Li, Kunlun He, and Ruoxiu Xiao. 2022. "An Intelligent Breast Ultrasound System for Diagnosis and 3D Visualization" Electronics 11, no. 14: 2116. https://doi.org/10.3390/electronics11142116
APA StyleLu, Y., Chen, Y., Chen, C., Li, J., He, K., & Xiao, R. (2022). An Intelligent Breast Ultrasound System for Diagnosis and 3D Visualization. Electronics, 11(14), 2116. https://doi.org/10.3390/electronics11142116