Double-Network Hydrogel for Stretchable Triboelectric Nanogenerator and Integrated Electroluminescent Skin with Self-Powered Rapid Visual Sensing
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of PAM-PVA Hydrogel
2.2. Mechanical Properties of PAM-PVA Hydrogel
2.3. Electrical Output Performance of the SH-TENG
2.4. Bio-Inspired Electroluminescent Skin
2.5. Self-Powered Raindrop Visual Sensing System
3. Conclusions
4. Experimental Section
4.1. Materials
4.2. Synthesis of PAM-PVA Double-Network Hydrogels
4.3. Fabrication of the SH-TENG
4.4. Fabrication of Self-Powered Raindrop Visual Sensing System
4.5. Characterization of Materials and Devices
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Yang, Y.; Wang, Z.L. Triboelectric nanogenerators as flexible power sources. Npj Flex. Electron. 2017, 1, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Fan, F.-R.; Tian, Z.-Q.; Lin Wang, Z. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334. [Google Scholar] [CrossRef]
- Li, C.; Liu, D.; Xu, C.; Wang, Z.; Shu, S.; Sun, Z.; Tang, W.; Wang, Z.L. Sensing of joint and spinal bending or stretching via a retractable and wearable badge reel. Nat. Commun. 2021, 12, 2950–2960. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-J.; Lee, S.; Seol, M.-L.; Jeon, S.-B.; Bae, H.; Kim, D.; Cho, G.-H.; Choi, Y.-K. Self-sustainable wind speed sensor system with omni-directional wind based triboelectric generator. Nano Energy 2019, 55, 115–122. [Google Scholar] [CrossRef]
- Kim, D.Y.; Choi, S.; Cho, H.; Sun, J.Y. Electroactive soft photonic devices for the synesthetic perception of color and sound. Adv. Mater. 2019, 31, 1804080–1804085. [Google Scholar] [CrossRef]
- Park, J.H.; Wu, C.; Sung, S.; Kim, T.W. Ingenious use of natural triboelectrification on the human body for versatile applications in walking energy harvesting and body action monitoring. Nano Energy 2019, 57, 872–878. [Google Scholar] [CrossRef]
- Parida, K.; Kumar, V.; Jiangxin, W.; Bhavanasi, V.; Bendi, R.; Lee, P.S. Highly transparent, stretchable, and self-healing ionic-skin triboelectric nanogenerators for energy harvesting and touch applications. Adv. Mater. 2017, 29, 1702181–1702188. [Google Scholar] [CrossRef]
- Luo, X.; Zhu, L.; Wang, Y.C.; Li, J.; Nie, J.; Wang, Z.L. A flexible multifunctional triboelectric nanogenerator based on MXene/PVA hydrogel. Adv. Funct. Mater. 2021, 31, 2104928–2104936. [Google Scholar] [CrossRef]
- Wang, L.; He, T.; Zhang, Z.; Zhao, L.; Lee, C.; Luo, G.; Mao, Q.; Yang, P.; Lin, Q.; Li, X.; et al. Self-sustained autonomous wireless sensing based on a hybridized TENG and PEG vibration mechanism. Nano Energy 2021, 80, 105555–105566. [Google Scholar] [CrossRef]
- Liu, Y.; Ping, J.; Ying, Y. Recent progress in 2D-nanomaterial-based triboelectric nanogenerators. Adv. Funct. Mater. 2021, 31, 2009994–2010009. [Google Scholar] [CrossRef]
- Jeong, Y.R.; Lee, G.; Park, H.; Ha, J.S. Stretchable, skin-attachable electronics with integrated energy storage devices for biosignal monitoring. Acc. Chem. Res. 2019, 52, 91–99. [Google Scholar] [CrossRef]
- Mao, J.; Zhao, C.; Liu, L.; Li, Y.; Xiang, D.; Wu, Y.; Li, H. Adhesive, transparent, stretchable, and strain-sensitive hydrogel as flexible strain sensor. Compos. Commun. 2021, 25, 100733–100738. [Google Scholar] [CrossRef]
- Xu, W.; Huang, L.-B.; Wong, M.-C.; Chen, L.; Bai, G.; Hao, J. Environmentally Friendly Hydrogel-Based Triboelectric Nanogenerators for Versatile Energy Harvesting and Self-Powered Sensors. Adv. Energy Mater. 2017, 7, 1601529–1601536. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Z.; Zhao, G.; Zhang, Z.; Zhao, X.; Wan, X.; Zhang, Y.; Wang, Z.L.; Li, L. Stretchable Unsymmetrical Piezoelectric BaTiO3 Composite Hydrogel for Triboelectric Nanogenerators and Multimodal Sensors. ACS Nano 2022, 16, 1661–1670. [Google Scholar] [CrossRef]
- Yang, J.; An, J.; Sun, Y.; Zhang, J.; Zu, L.; Li, H.; Jiang, T.; Chen, B.; Wang, Z.L. Transparent self-powered triboelectric sensor based on PVA/PA hydrogel for promoting human-machine interaction in nursing and patient safety. Nano Energy 2022, 97, 107199–107209. [Google Scholar] [CrossRef]
- Guo, H.; Wang, H.; Shao, J.; Shao, Y.; Jia, L.; Li, L.; Pu, X.; Wang, Z.L. Bioinspired soft electroreceptors for artificial precontact somatosensation. Sci. Adv. 2022, 8, 5201–5210. [Google Scholar] [CrossRef]
- Klein, A.; Whitten, P.G.; Resch, K.; Pinter, G. Nanocomposite hydrogels: Fracture toughness and energy dissipation mechanisms. J. Polym. Sci. B Polym. Phys. 2015, 53, 1763–1773. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Qin, H.; Zhang, T.; Cong, H.P.; Yu, S.H. Highly tough bioinspired ternary hydrogels synergistically reinforced by Graphene/Xonotlite network. Small 2018, 14, 1800673–1800680. [Google Scholar] [CrossRef]
- Liang, Z.; Liu, C.; Li, L.; Xu, P.; Luo, G.; Ding, M.; Liang, Q. Double-network hydrogel with tunable mechanical performance and biocompatibility for the fabrication of stem cells-encapsulated fibers and 3D assemble. Sci. Rep. 2016, 6, 33462–33472. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Chen, S.; Wang, D.; Yang, Q.; Mo, F.; Liang, G.; Li, N.; Zhang, H.; Zapien, J.A.; Zhi, C. Super-stretchable zinc-air batteries based on an alkaline-tolerant dual-network hydrogel electrolyte. Adv. Energy Mater. 2019, 9, 1803046–1803053. [Google Scholar] [CrossRef]
- Sheng, F.; Yi, J.; Shen, S.; Cheng, R.; Ning, C.; Ma, L.; Peng, X.; Deng, W.; Dong, K.; Wang, Z.L. Self-powered smart arm training band sensor based on extremely stretchable hydrogel conductors. ACS Appl. Mater. Interfaces 2021, 13, 44868–44877. [Google Scholar] [CrossRef]
- Kim, W.G.; Kim, D.W.; Tcho, I.W.; Kim, J.K.; Kim, M.S.; Choi, Y.K. Triboelectric nanogenerator: Structure, mechanism, and applications. ACS Nano 2021, 15, 258–287. [Google Scholar] [CrossRef]
- Wang, L.; Xiao, L.; Gu, H.; Sun, H. Advances in alternating current electroluminescent devices. Adv. Opt. Mater. 2019, 7, 1801154–1801183. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Yang, P.; Chen, M.; Yang, K.; Cao, Y.; Li, X.; Tang, M.; Chen, W.; Zhou, X. Constructing a novel electroluminescent device with high-temperature and high-humidity resistance based on a flexible transparent wood film. ACS Appl. Mater. Interfaces 2019, 11, 36010–36019. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, L.; Xue, C.; Liu, P.; Du, X.; Wen, K.; Zhang, H.; Xu, L.; Xiang, C.; Lin, C.; et al. Efficient and bright warm-white electroluminescence from lead-free metal halides. Nat. Commun. 2021, 12, 1421–1427. [Google Scholar] [CrossRef]
- Larson, C.; Peele, B.; Li, S.; Robinson, S.; Totaro, M.; Beccai, L.; Mazzolai, B.; Shepherd, R. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 2016, 351, 1071–1074. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Zhang, P.; Xiao, W.; Zhao, J.; Shi, M.; Wei, H.; Deng, Z.; Guo, B.; Zheng, Z.; Yu, Y. Visible-light-assisted multimechanism design for one-step engineering tough hydrogels in seconds. Nat. Commun. 2020, 11, 4694–4702. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, X.; Yang, F.; Shen, H.; Wu, D. A universal soaking strategy to convert composite hydrogels into extremely tough and rapidly recoverable double-network hydrogels. Adv. Mater. 2016, 28, 7178–7184. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhu, L.; Yang, J.; Zhang, J.; Chen, B.; Wang, Z.L. Flexible alternating-current electroluminescence plunging to below 1 Hz frequency by triboelectrification. Adv. Opt. Mater. 2021, 10, 2101918–2101925. [Google Scholar] [CrossRef]
- Dinh Xuan, H.; Timothy, B.; Park, H.Y.; Lam, T.N.; Kim, D.; Go, Y.; Kim, J.; Lee, Y.; Ahn, S.I.; Sung-Ho, J.; et al. Super stretchable and durable electroluminescent devices based on double-network ionogels. Adv. Mater. 2021, 33, 2008849–2008854. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.; Liu, Z.; Mo, F.; Tang, Z.; Li, H.; Wang, Z.; Sarangi, V.; Pramanick, A.; Fan, J.; Zhi, C. Self-healable electroluminescent devices. Light Sci. Appl. 2018, 7, 102–112. [Google Scholar] [CrossRef] [Green Version]
- Shin, H.; Sharma, B.K.; Lee, S.W.; Lee, J.B.; Choi, M.; Hu, L.; Park, C.; Choi, J.H.; Kim, T.W.; Ahn, J.H. Stretchable electroluminescent display enabled by graphene-based hybrid electrode. ACS Appl. Mater. Interfaces 2019, 11, 14222–14228. [Google Scholar] [CrossRef]
- Kim, B.S.; Kwon, H.; Kwon, H.J.; Pyo, J.B.; Oh, J.; Hong, S.Y.; Park, J.H.; Char, K.; Ha, J.S.; Son, J.G.; et al. Buckling instability control of 1D nanowire networks for a large-area stretchable and transparent electrode. Adv. Funct. Mater. 2020, 30, 1910214–1910223. [Google Scholar] [CrossRef]
- Ji, J.; Perepichka, I.F.; Bai, J.; Hu, D.; Xu, X.; Liu, M.; Wang, T.; Zhao, C.; Meng, H.; Huang, W. Three-phase electric power driven electoluminescent devices. Nat. Commun. 2021, 12, 54–64. [Google Scholar] [CrossRef]
- Xu, X.; Hu, D.; Yan, L.; Fang, S.; Shen, C.; Loo, Y.L.; Lin, Y.; Haines, C.S.; Li, N.; Zakhidov, A.A.; et al. Polar-electrode-bridged electroluminescent displays: 2D sensors remotely communicating optically. Adv. Mater. 2017, 29, 1703552–1703559. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Zhang, J.; Li, C.; Yang, J.; Li, H.; Jiang, T.; Chen, B. Double-Network Hydrogel for Stretchable Triboelectric Nanogenerator and Integrated Electroluminescent Skin with Self-Powered Rapid Visual Sensing. Electronics 2022, 11, 1928. https://doi.org/10.3390/electronics11131928
Sun Y, Zhang J, Li C, Yang J, Li H, Jiang T, Chen B. Double-Network Hydrogel for Stretchable Triboelectric Nanogenerator and Integrated Electroluminescent Skin with Self-Powered Rapid Visual Sensing. Electronics. 2022; 11(13):1928. https://doi.org/10.3390/electronics11131928
Chicago/Turabian StyleSun, Yanshuo, Jianjun Zhang, Chengyu Li, Jin Yang, Hao Li, Tao Jiang, and Baodong Chen. 2022. "Double-Network Hydrogel for Stretchable Triboelectric Nanogenerator and Integrated Electroluminescent Skin with Self-Powered Rapid Visual Sensing" Electronics 11, no. 13: 1928. https://doi.org/10.3390/electronics11131928
APA StyleSun, Y., Zhang, J., Li, C., Yang, J., Li, H., Jiang, T., & Chen, B. (2022). Double-Network Hydrogel for Stretchable Triboelectric Nanogenerator and Integrated Electroluminescent Skin with Self-Powered Rapid Visual Sensing. Electronics, 11(13), 1928. https://doi.org/10.3390/electronics11131928