A Novel Prognostic Model of the Degradation Malfunction Combining a Dynamic Updated-ARIMA and Multivariate Isolation Forest: Application to Radar Transmitter
Abstract
:1. Introduction
- (1)
- A novel radar transmitter degradation malfunction prognosis model is proposed.
- (2)
- The accuracy of the future time-step for monitoring data prediction is improved.
- (3)
- Radar transmitter degradation malfunction detection is realized when there are small samples, no fault samples, no feature extractions, and no artificial thresholds.
2. Prognostic Model of Radar Transmitter Degradation Malfunction
2.1. Microwave Measurement and Data Pre-Processing
2.2. Dynamically Updated-Auto-Regressive Integrated Moving Average
2.3. Multiple Isolation Forest
3. Experiment and Analysis
3.1. Experimental Conditions and Experimental Design
3.2. Feasibility Experiment and Result Analysis
3.3. Portability Experiment and Result Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BIT | Built-In Test |
MIMO | Multiple-Input–Multiple-Output |
LSTM | Long Short-Term Memory |
DU-ARIMA | Dynamic Updated-Auto-Regressive Integrated Moving Average |
M-iForest | Multiple-isolation Forest |
ADF | Augmented Dickey–Fuller |
KPSS | Kwiatkowski–Phillips–Schmidt–Shin |
ARIMA | Auto-Regressive Integrated Moving Average |
DU-ARMA | Dynamic Updated-Auto-Regressive Moving Average |
ARMA | Auto-Regressive Moving Average |
RMSE | Root Mean Square Error |
M-iForest | Multiple isolation Forest |
AUC | Area Under Curve |
Appendix A
References
- Cui, Z.; Henrickson, K.; Ke, R.; Wang, Y. Traffic graph convolutional recurrent neural network: A Deep Learning framework for network-scale traffic learning and forecasting. IEEE Trans. Intell. Transp. Syst. 2020, 21, 4883–4894. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Li, S.; Liu, Y.; Dong, H. A Hybrid Method for the Fault Diagnosis of Onboard Traction Transformers. Electronics 2022, 11, 762. [Google Scholar] [CrossRef]
- Ghanim, M.S.; Abu-Lebdeh, G. Projected state-wide traffic forecast parameters using artificial neural networks. IET Intell. Transp. Syst. 2019, 13, 661–669. [Google Scholar] [CrossRef]
- Zhang, J.; Du, D.; Bao, Y.; Wang, J.; Wei, Z. Development of multifrequency-swept microwave sensing system for moisture measurement of sweet corn with deep neural network. IEEE Trans. Instrum. Meas. 2020, 69, 6446–6454. [Google Scholar] [CrossRef]
- Nabulsi, A.A.; Al-Shaikhli, W.; Kettlewell, C.; Hejtmanek, K.; Hassan, A.M.; Derakhshani, R. Machine Learning Classification of S-Band Microwave Scattering Measurements From the Forearm as a Novel Biometric Technique. IEEE Open J. Antennas Propag. 2020, 1, 118–125. [Google Scholar] [CrossRef]
- Huang, N.; Chen, Q.; Cai, G.; Xu, D.; Zhang, L.; Zhao, W. Fault diagnosis of bearing in wind turbine gearbox under actual operating conditions driven by limited data with noise labels. IEEE Trans. Instrum. Meas. 2020, 70, 1–10. [Google Scholar] [CrossRef]
- Lin, S.L. Application of Machine Learning to a Medium Gaussian Support Vector Machine in the Diagnosis of Motor Bearing Faults. Electronics 2021, 10, 2266. [Google Scholar] [CrossRef]
- Long, J.; Zhang, S.; Li, C. Evolving deep echo state networks for intelligent fault diagnosis. IEEE Trans. Ind. Inform. 2019, 16, 4928–4937. [Google Scholar] [CrossRef]
- Dong, G.; Yang, F.; Wei, Z.; Wei, J.; Tsui, K.L. Data-driven battery health prognosis using adaptive brownian motion model. IEEE Trans. Ind. Inform. 2020, 16, 4736–4746. [Google Scholar] [CrossRef]
- El Mejdoubi, A.; Chaoui, H.; Gualous, H.; Van Den Bossche, P.; Omar, N.; Van Mierlo, J. Lithium-ion batteries health prognosis considering aging conditions. IEEE Trans. Power Electron. 2019, 34, 6834–6844. [Google Scholar] [CrossRef]
- Hu, X.; Che, Y.; Lin, X.; Deng, Z. Health prognosis for electric vehicle battery packs: A data-driven approach. IEEE-ASME Trans. Mechatron. 2020, 25, 2622–2632. [Google Scholar] [CrossRef]
- Yang, R.; Yu, L.; Zhao, Y.; Yu, H.; Xu, G.; Wu, Y.; Liu, Z. Big data analytics for financial market volatility forecast based on support vector machine. Int. J. Inf. Manag. 2020, 50, 452–462. [Google Scholar] [CrossRef]
- Ren, R.; Wu, D.D.; Liu, T. Forecasting stock market movement direction using sentiment analysis and support vector machine. IEEE Syst. J. 2018, 13, 760–770. [Google Scholar] [CrossRef]
- Chou, J.S.; Nguyen, T.K. Forward forecast of stock price using sliding-window metaheuristic-optimized machine-learning regression. IEEE Trans. Ind. Inform. 2018, 14, 3132–3142. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, J.; Chen, X. Array diagnosis using signal subspace clustering in MIMO radar. Electron. Lett. 2020, 56, 99–101. [Google Scholar] [CrossRef]
- Khan, S.U.; Rahim, M.; Murad, N.; Zubir, F.; Ayop, O.; Yusoff, M.; Hamid, M.; Dewan, R. Detection of the Faulty Sensors on Basis of the Pattern Using Symmetrical Structure of Linear Array Antenna. Appl. Comput. Electromagn. Soc. J. 2017, 32, 358–365. [Google Scholar]
- Chen, J.; Zhuo, Q.; Li, J.; Zhu, Y. Array diagnosis and angle estimation in bistatic MIMO radar under array antenna failures. IET Radar Sonar Navig. 2019, 13, 1180–1188. [Google Scholar] [CrossRef]
- Finchera, D.; Migliore, M.D.; Lucido, M.; Schettino, F.; Panariello, G. Online failure detection in large massive MIMO linear arrays. In Proceedings of the 2017 International Applied Computational Electromagnetics Society Symposium-Italy (ACES), Florence, Italy, 26–30 March 2017; pp. 1–2. [Google Scholar]
- Qianqian, L.; Jingyuan, Z.; Bing, C. Study on life prediction of radar based on non-parametric regression model. In Proceedings of the 2017 13th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), Yangzhou, China, 20–22 October 2017; pp. 586–590. [Google Scholar]
- Li, W.; Zhou, W.; Wang, Y.M.; Shen, C.; Zhang, X.; Li, X. Meteorological radar fault diagnosis based on deep learning. In Proceedings of the 2019 International Conference on Meteorology Observations (ICMO), Chengdu, China, 28–31 December 2019; pp. 1–4. [Google Scholar]
- Zhai, Y.; Fang, S. A Degradation Fault Prognostic Method of Radar Transmitter Combining Multivariate Long Short-Term Memory Network and Multivariate Gaussian Distribution. IEEE Access 2020, 8, 199781–199791. [Google Scholar] [CrossRef]
- Wang, C.; Lu, N.; Chen, Y.; Yu, H. A Data-driven Fault Detection Method for Radar Cooling System. In Proceedings of the 2021 CAA Symposium on Fault Detection, Supervision, and Safety for Technical Processes (SAFEPROCESS), Chengdu, China, 6–8 August 2021; pp. 1–5. [Google Scholar]
- Li, Y.; Yang, J.; Fei, T.; Xie, Y. Few-shot Classification of Radar Equipment Fault Based on TF-IDF Feature Date Augmentation and BERT. In Proceedings of the 2021 International Conference on Machine Learning and Intelligent Systems Engineering (MLISE), Chongqing, China, 9–11 July 2021; pp. 444–448. [Google Scholar]
- Zhao, G.; Liu, C.; Li, S.; Tian, Z.; Liu, X.; Li, H. Radar System Testability Design and Demonstration Based on Fault Modes and Software Control. In Proceedings of the 2021 8th International Conference on Dependable Systems and Their Applications (DSA), Yinchuan, China, 11–12 September 2021; pp. 307–314. [Google Scholar]
- Mallat, S.; Hwang, W.L. Singularity detection and processing with wavelets. IEEE Trans. Inf. Theory 1992, 38, 617–643. [Google Scholar] [CrossRef]
- Dickey, D.A.; Fuller, W.A. Distribution of the estimators for auto-regressive time series with a unit root. J. Am. Stat. Assoc. 1979, 74, 427–431. [Google Scholar]
- Kwaitkowski, D.; Phillips, P.C.; Schmidt, P.; Shin, Y. Testing the null hypothesis of stationarity against the alternative of a unit root. J. Econom. 1992, 54, 159–178. [Google Scholar] [CrossRef]
- Box, G.E.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015. [Google Scholar]
- Liu, F.T.; Ting, K.M.; Zhou, Z.H. Isolation forest. In Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 15–19 December 2008; pp. 413–422. [Google Scholar]
The Limitations | Reference |
---|---|
Feature extraction required | [15,16,17,18,22,23] |
Artificial threshold required | [19,22] |
Extensive historical data and fault samples required | [19,20,23,24] |
The Historical Data | ADF | KPSS | Stationarity |
---|---|---|---|
Peak power | 0 | 1 | Non-stationarity |
Operating frequency | 0 | 1 | Non-stationarity |
The Evaluation Results | Values |
---|---|
AUC Average | 0.9895 |
AUC Variance | 0 |
Alarm time-step | 183, 184, 188, 189, 190, 191, 192 |
The Evaluation Results | Values |
---|---|
AUC Average | 0.9906 |
AUC Variance | 0.0022 |
Alarm time-step | 183, 184, 185, 188, 189, 190, 191, 192 |
The Evaluation Results | Values |
---|---|
AUC Average | 0.9944 |
AUC Variance | 0.0028 |
Alarm time-step | 244, 245, 246, 247, 248, 249, 250, 251, 252, 253 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, Y.; Liu, D.; Cheng, Z.; Fang, S. A Novel Prognostic Model of the Degradation Malfunction Combining a Dynamic Updated-ARIMA and Multivariate Isolation Forest: Application to Radar Transmitter. Electronics 2022, 11, 1921. https://doi.org/10.3390/electronics11121921
Zhai Y, Liu D, Cheng Z, Fang S. A Novel Prognostic Model of the Degradation Malfunction Combining a Dynamic Updated-ARIMA and Multivariate Isolation Forest: Application to Radar Transmitter. Electronics. 2022; 11(12):1921. https://doi.org/10.3390/electronics11121921
Chicago/Turabian StyleZhai, Yuting, Dongli Liu, Zhanxin Cheng, and Shaojun Fang. 2022. "A Novel Prognostic Model of the Degradation Malfunction Combining a Dynamic Updated-ARIMA and Multivariate Isolation Forest: Application to Radar Transmitter" Electronics 11, no. 12: 1921. https://doi.org/10.3390/electronics11121921
APA StyleZhai, Y., Liu, D., Cheng, Z., & Fang, S. (2022). A Novel Prognostic Model of the Degradation Malfunction Combining a Dynamic Updated-ARIMA and Multivariate Isolation Forest: Application to Radar Transmitter. Electronics, 11(12), 1921. https://doi.org/10.3390/electronics11121921