Spin Orbit Torque-Assisted Magnetic Tunnel Junction-Based Hardware Trojan
Abstract
:1. Introduction
2. Background
2.1. Hardware Trojan (HT)
2.2. Magnetic Tunnel Junction (MTJ)
3. Hardware Trojan Operation
3.1. Circuit Description of Hardware Trojan (HT) Block
3.2. Logic Locking
4. Experimental Results
4.1. P-MTJ Device Single Block
4.2. Hardware Trojan Block
4.3. Hardware Trojan Inserted in Logic-Locking Circuit
4.4. Hardware Trojan Detection
4.4.1. Destructive Tests
4.4.2. Functional Tests
4.4.3. Side Channel Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Semiconductor Industry Association (SIA), Global Billings Report History (3-Month Moving Average) 1976-March 2009. 2008. Available online: http://www.sia-online.org/galleries/Statistics/GSR1976-March09.xls (accessed on 4 April 2022).
- Guin, U.; Forte, D.; Tehranipoor, M. Anti-counterfeit techniques: From design to resign. In Proceedings of the 14th International Workshop on Microprocessor Test and Verification, Austin, TX, USA, 11–13 December 2013; pp. 89–94. [Google Scholar]
- Guin, U. Establishment of Trust and Integrity in Modern Supply Chain from Design to Resign. Ph.D. Dissertation, University of Connecticut Electrical and Computer Engineering, Mansfield, CT, USA, 2016. Available online: https://opencommons.uconn.edu/dissertations/1063 (accessed on 4 April 2022).
- Tehranipoor, M.M.; Guin, U.; Forte, D. Counterfeit integrated circuits. In Counterfeit Integrated Circuits; Springer: Cham, Switzerland, 2015; pp. 15–36. [Google Scholar]
- IARPA Trusted Integrated Circuits (TIC) Program Announcement. Available online: https://www.iarpa.gov/index.php/research-programs/tic/baa (accessed on 15 February 2019).
- Xiao, K. Techniques for Improving Security and Trustworthiness of Integrated Circuits. Ph.D. Dissertation, University of Connecticut Electrical and Computer Engineering, Mansfield, CT, USA, 2015. Available online: https://opencommons.uconn.edu/dissertations/947 (accessed on 2 April 2022).
- Agrawal, D.; Baktir, S.; Karakoyunlu, D.; Rohatgi, P.; Sunar, B. Trojan detection using IC fingerprinting. In Proceedings of the Symposium on Security and Privacy, Berkeley, CA, USA, 20–23 May 2007; pp. 296–310. [Google Scholar]
- Karri, R.; Rajendran, J.; Rosenfeld, K.; Tehranipoor, M. Trustworthy hardware: Identifying and classifying hardware trojans. IEEE Comput. 2010, 43, 39–46. [Google Scholar] [CrossRef]
- Tehranipoor, M.; Koushanfar, F. A survey of hardware Trojan taxonomy and detection. IEEE Des. Test Comput. 2010, 27, 10–25. [Google Scholar] [CrossRef]
- Piliposyan, G.; Khursheed, S.; Rossi, D. Hardware Trojan Detection on a PCB Through Differential Power Monitoring. IEEE Trans. Emerg. Top. Comput. 2020. [Google Scholar] [CrossRef]
- Jinnai, B.; Igarashi, J.; Shinoda, T.; Watanabe, K.; Fukami, S.; Ohno, H. Fast Switching Down to 3.5 ns in Sub-5-nm Magnetic Tunnel Junctions Achieved by Engineering Relaxation Time. In Proceedings of the 2021 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 12–15 December 2021; pp. 1–4. [Google Scholar]
- Ghosh, S. Spintronics and security: Prospects, vulnerabilities, attack models, and preventions. Proc. IEEE 2016, 104, 1864–1893. [Google Scholar] [CrossRef]
- Massoud, Y.; Nieuwoudt, A. Modeling and design challenges and solutions for carbon nanotube-based interconnect in future high performance integrated circuits. ACM J. Emerg. Technol. Comput. Syst. 2006, 2, 155–196. [Google Scholar] [CrossRef]
- Nieuwoudt, A.; Massoud, Y. Predicting the Performance of Low-Loss On-Chip Inductors Realized Using Carbon Nanotube Bundles. IEEE Trans. Electron Dev. 2008, 55, 298–312. [Google Scholar] [CrossRef]
- Massoud, Y.; Ismail, Y. Grasping the Impact of On-Chip Inductance in High Speed ICs. IEEE Circuits Devices Mag. 2001, 17, 14–21. [Google Scholar] [CrossRef]
- Eachempati, S.; Nieuwoudt, A.; Gayasen, A.; Narayanan, V.; Massoud, Y. Assessing Carbon Nanotube Bundle Interconnect for Future FPGA Architectures. In Proceedings of the IEEE Design Automation and Test in Europe, Nice, France, 16–20 April 2007. [Google Scholar]
- Nieuwoudt, A.; Ragheb, T.; Nejati, H.; Massoud, Y. Increasing Manufacturing Yield for Wideband RF CMOS LNAs in the Presence of Process Variations. In Proceedings of the IEEE Symposium on Quality Electronic Design, Washington, DC, USA, 26–28 March 2007. [Google Scholar]
- Nieuwoudt, A.; Mondal, M.; Massoud, Y. Predicting the Performance and Reliability of Carbon Nanotube Bundles for On-Chip Interconnect. In Proceedings of the IEEE ASP Design Automation Conference, Yokohama, Japan, 23–26 January 2007. [Google Scholar]
- Nieuwoudt, A.; Massoud, Y. Accurate Resistance Modeling for Carbon Nanotube Bundles in VLSI Interconnect. In Proceedings of the IEEE Conference on Nanotechnology, Cincinnati, OH, USA, 17–20 July 2006. [Google Scholar]
- Nieuwoudt, A.; Massoud, Y. Assessing the Implications of Process Variations on Future Carbon Nanotube Bundle Interconnect Solutions. In Proceedings of the IEEE Symposium on Quality Electronic Design, San Jose, CA, USA, 26–28 March 2007. [Google Scholar]
- Nieuwoudt, A.; Massoud, Y. Performance Implications of Inductive Effects for Carbon Nanotube Bundle Interconnect. IEEE Electron Devices Lett. 2007, 28, 305–307. [Google Scholar] [CrossRef]
- Ragheb, T.; Massoud, Y. On the modeling of resistance in Graphene Nanoribbon (GNR) for future interconnect applications. In Proceedings of the 2008 International Conference on Computer-Aided Design (ICCAD’08), San Jose, CA, USA, 10–13 November 2008; pp. 10–13. [Google Scholar]
- Barla, P.; Joshi, V.K.; Bhat, S. Design and analysis of SHE-assisted STT MTJ/CMOS logic gates. J. Comput. Electron. 2021, 20, 1964–1976. [Google Scholar] [CrossRef]
- Levi, I.; Bellizia, D.; Standaert, F.-X. Reducing a Masked Implementation’s Effective Security Order with Setup Manipulations and an Explanation Based on Externally-Amplified Couplings. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019, 2, 293–317. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, W.; Deng, E.; Klein, J.; Chappert, C. Perpendicular-anisotropy magnetic tunnel junction switched by spin-Hall-assisted spin-transfer torque. J. Phys. D Appl. Phys. 2015, 48, 065001. [Google Scholar] [CrossRef]
- Roohi, A.; Zand, R.; Demara, R. Logic-Encrypted Synthesis for Energy-Harvesting-Powered Spintronic-Embedded Datapath Design. In Proceedings of the GLSVLSI ’18: Proceedings of the 2018 on Great Lakes Symposium on VLSI, Chicago, IL, USA, 23–25 May 2018. [Google Scholar]
- Zhang, J.; Guo, Z.; Zhang, S.; Cao, Z.; Li, R.; Cao, J.; Song, M.; Wan, M.; Hong, J.; You, L. Spin-orbit torque-based reconfigurable physically unclonable functions. Appl. Phys. Lett. 2020, 116, 192406. [Google Scholar] [CrossRef]
- Choi, W.; Lv, Y.; Kim, J.; Deshpande, A.; Kang, G.; Wang, J.; Kim, C. A Magnetic Tunnel Junction based True Random Number Generator with conditional perturb and real-time output probability tracking. In Proceedings of the IEEE International Electron Devices Meeting, San Francisco, CA, USA, 15–17 December 2014. [Google Scholar]
- Chakraborty, R.S.; Narasimhan, S.; Bhunia, S. Hardware Trojan: Threats and emerging solutions. In Proceedings of the 2009 IEEE International High Level Design Validation and Test Workshop, San Francisco, CA, USA, 4–6 November 2009; pp. 166–171. [Google Scholar]
- Knechtel, J. Hardware Security for and beyond CMOS technology. In Proceedings of the ISPD ’21: 2021 International Symposium on Physical Design, Portland, OR, USA, 19–22 March 2021; pp. 115–126. [Google Scholar]
- Wang, M.; Cai, W.; Zhu, D.; Wang, Z.; Kan, J.; Zhao, Z.; Cao, K.; Wang, Z.; Zhang, Y.; Zhang, T.; et al. Field-free switching of perpendicular magnetic tunnel junction by the interplay of spin-orbit and spin-transfer torques. Nat. Electron. 2018, 1, 585–588. [Google Scholar] [CrossRef]
- Chakraborty, A.; Jayasankaran, N.G.; Liu, Y.; Rajendran, J.; Sinanoglu, O.; Srivastava, A.; Xie, Y.; Yasin, M.; Zuzak, M. Keynote: A Disquisition on Logic Locking. IEEE Trans.-Comput.-Aided Des. Integr. Circuits Syst. 2020, 39, 1952–1972. [Google Scholar] [CrossRef]
- Roy, A.J.; Koushanfar, F.; Markov, L.I. EPIC: Ending Piracy of Integrated Circuits. In Proceedings of the 2008 Design, Automation and Test in Europe, Munich, Germany, 10–14 March 2008; pp. 1069–1074. [Google Scholar]
- Kitagawa, E.; Fujita, S.; Nomura, K.; Noguchi, H.; Abe, K.; Ikegami, K.; Daibou, T.; Kato, Y.; Kamata, C.; Kashiwada, S.; et al. Impact of ultra low power and fast write operation of advanced perpendicular MTJ on power reduction for high-performance mobile CPU. In Proceedings of the 2012 International Electron Devices Meeting, San Francisco, CA, USA, 10–13 December 2012; pp. 29.4.1–29.4.4. [Google Scholar]
- Hébrard, L.; Nguyen, D.V.; Vogel, D.; Schell, J.B.; Po, C.; Dumas, N.; Pascal, J. On the influence of strong magnetic field on MOS transistors. In Proceedings of the 2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS), Monte Carlo, Monaco, 11–14 December 2016; pp. 564–567. [Google Scholar]
- Yue, M.; Tehranipoor, S. A Novel Probability-Based Logic-Locking Technique: ProbLock. Sensors 2021, 21, 8126. [Google Scholar] [CrossRef] [PubMed]
- Kamali, H.M.; Azar, K.Z.; Farahmandi, F.; Tehranipoor, M. Advances in Logic Locking: Past, Present, and Prospects. Cryptol. Eprint Arch. 2022. Available online: https://eprint.iacr.org/2022/260.pdf (accessed on 2 April 2022).
- Bhunia, S.; Tehranipoor, M. Hardware Security: A Hands-on Learning Approach; Morgan Kaufmann: Burlington, VT, USA, 2018; pp. 109–140. [Google Scholar]
- Bhunia, S.; Hsiao, M.S.; Banga, M.; Narasimhan, S. Hardware Trojan attacks: Threat analysis and countermeasures. Proc. IEEE 2014, 102, 1229–1247. [Google Scholar] [CrossRef]
- Waksman, A.; Suozzo, M.; Sethumadhavan, S. FANCI: Identification of stealthy malicious logic using boolean functional analysis. In Proceedings of the 2013 ACM SIGSAC Conference on Computer and Communications Security, Berlin, Germany, 4–8 November 2013; pp. 697–708. [Google Scholar]
Parameters | Values |
---|---|
MTJ Dimension and Shape | 40 nm × 40 nm, circular |
Free Layer Thickness | 0.7 nm |
Oxide Layer Thickness | 0.85 nm |
HM Length, Width, and Height | 60 nm × 40 nm × 3 nm |
Gilbert Damping Coefficient | 0.03 |
Saturation Magnetization | 800,000 emu/cm |
TMR | 120% |
Anisotropy Field | 88,000 A/m |
Spin Hall Angle | 0.3 |
Heavy Metal Resistance | 1000 |
Potential Barrier Height of MgO | 0.5 V |
Simulation Steps | 1 ps |
Polarization Factor | 0.61 |
Initial Configuration | Set at Parallel |
PV (, , ) | Min Value | Max Value | Mean Value | Std. Dev | Pass Ratio |
---|---|---|---|---|---|
3% | 13.31 k | 19.69 k | 16.66 k | 1.022 k | 97.50% |
5% | 11.47 k | 22.04 k | 16.73 k | 1.701 k | 89% |
10% | 7.878 k | 29.16 k | 17.00 k | 3.429 k | 58% |
PV (, , ) | Min Value | Max Value | Mean Value | Std. Dev | Pass Ratio |
---|---|---|---|---|---|
3% | 14.16 k | 19.42 k | 16.77 k | 1.027 k | 99% |
5% | 12.68 k | 21.49 k | 16.85 k | 1.719 k | 89.50% |
10% | 11.13 k | 27.62 k | 17.34 k | 3.662 k | 59% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, R.; Divyanshu, D.; Khan, D.; Amara, S.; Massoud, Y. Spin Orbit Torque-Assisted Magnetic Tunnel Junction-Based Hardware Trojan. Electronics 2022, 11, 1753. https://doi.org/10.3390/electronics11111753
Kumar R, Divyanshu D, Khan D, Amara S, Massoud Y. Spin Orbit Torque-Assisted Magnetic Tunnel Junction-Based Hardware Trojan. Electronics. 2022; 11(11):1753. https://doi.org/10.3390/electronics11111753
Chicago/Turabian StyleKumar, Rajat, Divyanshu Divyanshu, Danial Khan, Selma Amara, and Yehia Massoud. 2022. "Spin Orbit Torque-Assisted Magnetic Tunnel Junction-Based Hardware Trojan" Electronics 11, no. 11: 1753. https://doi.org/10.3390/electronics11111753