Development of Enhanced Range, High Q, Passive, Chipless RFID Tags for Continuous Monitoring and Sensing Applications
Abstract
:1. Introduction
2. Basic Architecture of RFID System
3. RFID Reader Description
4. CSR RFID Tag Description
4.1. Design of Single Resonator Tag
4.2. Design of Multi-Resonator Tags
4.3. Omnidirectional Wide Band Antenna
5. Numerical and Experimental Assessment
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mulloni, V.; Donelli, M. Chipless RFID Sensors for the Internet of Things: Challenges and Opportunities. Sensors 2020, 20, 2135. [Google Scholar] [CrossRef] [Green Version]
- Finkenzeller, K. RFID Handbook, 2nd ed.; Wiley: New York, NY, USA, 2004. [Google Scholar]
- Finkenzeller, K. RFID Handbook: Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and Near-Field Communication; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Weinstein, R. RFID: A technical overview and its application to the enterprise. IT Prof. 2005, 7, 27–33. [Google Scholar] [CrossRef]
- Dobkin, D.M. The RF in RFID: Passive UHF RFID in Practice; Elsevier: New York, NY, USA, 2006. [Google Scholar]
- Capdevila, S.; Jofre, L.; Romeu, J.; Bolomey, J.C. Passive RFID based sensing. In Proceedings of the IEEE International Conference on RFID-Technologies and Applications, Orlando, FL, USA, 12–14 April 2011. [Google Scholar]
- Kanojia, V.; Kapoor, S.; Sidhu, G.K. Radio Frequency Identification (RFID): Basic Principles and Applications in the Food Industry. In Handbook of Research on Food Processing and Preservation Technologies; Apple Academic Press: Williston, VT, USA, 2021; pp. 3–19. [Google Scholar]
- Kumar, P.; Reinitz, H.W.; Simunovic, J.; Sandeep, K.P.; Franzon, P.D. Overview of RFID technology and its applications in the food industry. J. Food Sci. 2009, 74, R101–R106. [Google Scholar] [CrossRef]
- Sharif, A.; Kumar, R.; Ouyang, J.; Abbas, H.T.; Alomainy, A.; Arshad, K.; Assaleh, K.; Althuwayb, A.; Imran, M.A.; Abbasi, Q.H. Making assembly line in supply chain robust and secure using UHF RFID. Sci. Rep. 2021, 11, 18041. [Google Scholar] [CrossRef] [PubMed]
- Zaqumi, M.N.; Yousaf, J.; Zarouan, M.; Hussaini, M.A.; Rmili, H. Passive Fractal Chipless RFID Tags Based on Cellular Automata for Security Applications. Appl. Comput. Electromagn. Soc. J. 2021, 36, 542–547. [Google Scholar] [CrossRef]
- Mondal, S.; Kumar, D.; Chahal, P. Recent Advances and Applications of Passive Harmonic RFID Systems: A Review. Micromachines 2021, 12, 420. [Google Scholar] [CrossRef] [PubMed]
- Hassania Rouan, E.; Boumezzough, A. RFID Based Security and Automatic Parking Access Control System. In International Conference on Business Intelligence; Springer: Cham, Switzerland, 2021; pp. 434–443. [Google Scholar]
- Raza, S.A. A systematic literature review of RFID in supply chain management. J. Enterp. Inf. Manag. 2021. [Google Scholar] [CrossRef]
- Chowdhury, B.D.B.; Masoud, S.; Son, Y.J.; Kubota, C.; Tronstad, R. A Dynamic HMM-based Real-time Location Tracking System Utilizing UHF Passive RFID. Available online: https://ieeexplore.ieee.org/abstract/document/9508353 (accessed on 1 December 2021).
- Sundaram, B.R.; Vasudevan, S.K.; Aravind, E.; Karthick, G.; Harithaa, S. Smart car design using RFID. Indian J. Sci. Technol. 2015, 8, 1–5. [Google Scholar] [CrossRef]
- Prasanth, V.; Soman, K.P. Ticketing solutions for Indian railways using RFID technology. In Proceedings of the 2009 International Conference on Advances in Computing, Control, and Telecommunication Technologies, Trivandrum, India, 28–29 December 2009; pp. 217–219. [Google Scholar]
- Oliveira, N.R.D.; Boaventura, L.P.; Ferreira, T.N.; Magri, V.P.; Pereira, J.S.; Mattos, D.M. A Low Cost, High-Reliability Receiver System for Reading Passive RFID Tags. J. Microwaves Optoelectron. Electromagn. Appl. 2021, 20, 812–822. [Google Scholar] [CrossRef]
- Rennane, A.; Benmahmoud, F.; Cherif, A.T.; Touhami, R.; Tedjini, S. Design of Autonomous Multi-Sensing Passive UHF RFID tag for Greenhouse Monitoring. Sens. Actuators A Phys. 2021, 331, 112922. [Google Scholar] [CrossRef]
- Prabavathi, P.; Subha Rani, S. Flower shaped frequency coded chipless RFID tag for low cost item tracking. Analog. Integr. Circuits Signal Process. 2021, 109, 79–91. [Google Scholar] [CrossRef]
- Sharif, A.; Ouyang, J.; Arshad, K.; Imran, M.A.; Abbasi, Q.H. Passive UHF RFID Tag Antennas-Based Sensing for Internet of Things Paradigm. In Backscattering and RF Sensing for Future Wireless Communication; 2021; Available online: https://www.semanticscholar.org/paper/Passive-UHF-RFID-Tag-Antennas (accessed on 1 December 2021).
- Donelli, M. Design of long-range, powerless RFID sensor at 10 GHz. Electron. Lett. 2013, 49, 1277–1278. [Google Scholar] [CrossRef]
- Donelli, M. Guidelines for the Design and Optimization of Wireless Sensors Based on the Modulated Scattering Technique. IEEE Trans. Instrum. Meas. 2014, 63, 1824–1833. [Google Scholar] [CrossRef]
- Dobrykh, D.; Yusupov, I.; Mikhailovskaya, A.; Krasikov, S.; Shakirova, D.; Bogdanov, A.; Slobozhanyuk, A.; Filonov, D.; Ginzburg, P. High-Permittivity Ceramic Tags Miniaturization for Long-Range RFID Applications. In Proceedings of the 2021 15th European Conference on Antennas and Propagation (EuCAP), Düsseldorf, Germany, 22–26 March 2021; pp. 1–4. [Google Scholar]
- Galko, I.; Kuffa, R.; Magdolenová, P.; Svetlík, J.; Veľas, A. RFID tags at the operation of fire stations. Transp. Res. Procedia 2021, 55, 941–948. [Google Scholar] [CrossRef]
- Rahmat-Samii, Y.; Song, L. Advances in Communication and Biomedical Antenna Developments at the UCLA Antenna Lab: Handheld, Wearable, Ingestible, and Implantable [Bioelectromagnetics]. IEEE Antennas Propag. Mag. 2021, 63, 102–115. [Google Scholar] [CrossRef]
- Hassan, M.; Abbas, G.; Li, N.; Afzal, A.; Haider, Z.; Ahmed, S.; Xu, X.; Pan, C.; Peng, Z. Significance of Flexible Substrates for Wearable and Implantable Devices: Recent Advances and Perspectives. Adv. Mater. Technol. 2021. [Google Scholar] [CrossRef]
- Ghosh, J.; Gopinath, S.; Chinmay, C. Smart Health Care for Societies: An Insight into the Implantable and Wearable Devices for Remote Health Monitoring. Green Technol. Innov. Sustain. Smart Soc. 2021, 12, 89–113. [Google Scholar]
- Hasni, U.; Piper, M.E.; Lundquist, J.; Topsakal, E. Screen-Printed Fabric Antennas for Wearable Applications. IEEE Open J. Antennas Propag. 2021, 2, 591–598. [Google Scholar] [CrossRef]
- Preradovic, S.; Karmakar, N.C. Multiresonator-Based Chipless RFID: Barcode of the Future; Springer: New York, NY, USA, 2012; ISBN 978-1-4614-2094-1. [Google Scholar]
- Mc Gee, K.; Anandarajah, P.; Collins, D. A Review of Chipless Remote Sensing Solutions Based on RFID Technology. Sensors 2019, 19, 4829. [Google Scholar] [CrossRef] [Green Version]
- Herrojo, C.; Paredes, F.; Mata-Contreras, J.; Martín, F. Martín Chipless-RFID: A Review and Recent Developments. Sensors 2019, 19, 3385. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.A.; Karmakar, N.C. A dual polarised universal reader for frequency domain-based chipless RFID tags and sensors. IET Microwaves Antennas Propag. 2021, 15, 342–355. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, X. Chipless Radio Frequency Identification Tag Design with Modified Interdigital Hairpin Resonators. In Proceedings of the 2018 International Conference on Intelligent Transportation, Big Data Smart City (ICITBS), Xiamen, China, 25–26 January 2018; pp. 645–648. [Google Scholar]
- Bibi, T.; Khan, A.T.; Amin, Y.; Ahmed, S. RFID in IoT, Miniaturized Pentagonal Slot-based Data Dense Chipless RFID Tag for IoT Applications. Arab. J. Sci. Eng. 2021, 2, 1–11. [Google Scholar] [CrossRef]
- Forouzandeh, M.; Karmakar, N.C. Chipless RFID tags and sensors: A review on time-domain techniques. Wirel. Power Transf. 2015, 2, 62–77. [Google Scholar] [CrossRef]
- Ghiri, R.E.; Entesari, K. Time-domain Ultra-wideband Chipless RFID Readers. IEEE Trans. Instrum. Meas. 2021, 23, 12–17. [Google Scholar]
- Barbot, N.; Etienne, P. Linear Time-Variant Chipless RFID Sensor. IEEE J. Radio Freq. Identif. 2021, 32, 22–27. [Google Scholar] [CrossRef]
- Vinod, A.; Aiswarya, S.; Meenu, L.; Menon, S.K. Design and analysis of planar resonators for wireless communication. In Proceedings of the 2020 5th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 10–12 June 2020; pp. 375–380. [Google Scholar]
- Aiswarya, S.; Sreerag, C.; Aravind, A.; Menon, S.K. Microstrip multiple resonator assisted passive RFID tag for object tracking. In Proceedings of the 2017 2nd International Conference on Communication and Electronics Systems (ICCES), Piscataway, NJ, USA, 19–20 October 2017; pp. 752–756. [Google Scholar]
- Sharma, V.; Hashmi, M. Chipless RFID tag based on open-loop resonator. In Proceedings of the 2017 IEEE Asia Pacific Microwave Conference (APMC), Kuala Lumpur, Malaysia, 13–16 November 2017; pp. 543–546. [Google Scholar]
- Chen, C.; Chen, Y.; Li, T.; Yu, Y.; Wu, W. A chipless RFID system based on polarization characteristics. In Proceedings of the 2017 7th IEEE International Symposium on Microwave, Antenna, Propagation, and EMC Technologies (MAPE), Xi’an, China, , 24–27 October 2017; pp. 324–329. [Google Scholar]
- Iswarya, S.; Ranjith, M.; Menon, S.K. Passive RFID tag with multiple resonators for object tracking. In Proceedings of the 2017 Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL), Singapore, 19–22 November 2017; pp. 742–746. [Google Scholar]
- Karthik, A.; Aiswarya, S.; Menon, S.K. Compact low cost passive rfid tag for object tracking. In Proceedings of the 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Bangalore, India, 19–22 September 2018; pp. 1711–1714. [Google Scholar]
- Chopade, P.; Gaikwad, S.V. Design and Analysis of Log Periodic Dipole Array Antenna. ICTACT J. Microelectron. 2019, 5, 836–844. [Google Scholar]
- Shahmohammadi, M.; Chabalko, M.; Sample, A.P. High-Q, over-coupled tuning for near-field RFID systems. In Proceedings of the 2016 IEEE International Conference on RFID (RFID), Foshan, China, 21–23 September 2016; pp. 1–8. [Google Scholar]
Frequency, [GHz] | Calculated Length, L [mm] | Simulated Frequency, [GHz] | Simulated | % Error |
---|---|---|---|---|
1.0 | 28.0991 | 0.9636 | −15 | 3.64 |
1.2 | 23.3826 | 1.1616 | −13 | 3.20 |
1.4 | 20.0137 | 1.3879 | −15 | 0.86 |
1.6 | 17.4870 | 1.6141 | −15 | 0.88 |
1.8 | 15.5217 | 1.7838 | −15 | 0.90 |
2.0 | 13.9496 | 2.0101 | −17 | 0.50 |
Number of Objects | Resonators Used | Frequency [GHz] | [dB] | Bit Sequence (Code Word) | Output Bit Sequence |
---|---|---|---|---|---|
1 | R1 | 0.9749 | −16 | 0001 | 1110 |
2 | R2 | 1.1622 | −16 | 0010 | 1101 |
3 | R1, R2 | 1.0017 | −20 | 0011 | 1100 |
1.1335 | −16 | ||||
4 | R3 | 1.3495 | −15 | 0100 | 1011 |
5 | R1, R3 | 0.9883 | −14 | 0101 | 1010 |
1.3424 | −15 | ||||
6 | R2, R3 | 1.1355 | −19 | 0110 | 1001 |
1.3495 | −15 | ||||
7 | R1, R2, R3 | 0.9816 | −17 | 0111 | 1000 |
1.1288 | −18 | ||||
1.3361 | −13 | ||||
8 | R4 | 1.704 | −16 | 1000 | 0111 |
9 | R1, R4 | 0.9682 | −17 | 1001 | 0110 |
1.6973 | −18 | ||||
10 | R2, R4 | 1.1154 | −14 | 1010 | 0101 |
1.6906 | −14 | ||||
11 | 0.9682 | −21 | 1011 | 0100 | |
R1, R2, R4 | 1.1288 | −14 | |||
1.6906 | −16 | ||||
12 | R3, R4 | 1.3495 | −17 | 1100 | 0011 |
1.7241 | −17 | ||||
13 | R1, R3, R4 | 0.9682 | −15 | 1101 | 0010 |
1.3428 | −15 | ||||
1.7107 | −19 | ||||
14 | R2, R3, R4 | 1.1689 | −17 | 1110 | 0001 |
1.3495 | −17 | ||||
1.6906 | −16 | ||||
15 | R1, R2, R3, R4 | 0.9615 | −18 | 1111 | 0000 |
1.1355 | −17 | ||||
1.3562 | −15 | ||||
1.6973 | −17 |
Resonator | Length of Resonator [mm] | Operating Frequency [GHz] | [dB] |
---|---|---|---|
R1 | 40.0 | 0.6543 | −15 |
R2 | 35.4 | 0.7525 | −11 |
R3 | 31.4 | 0.8998 | −15 |
R4 | 27.4 | 0.9980 | −17 |
R5 | 24.0 | 1.1032 | −15 |
R6 | 20.0 | 1.3487 | −14 |
R7 | 17.0 | 1.5661 | −23 |
R8 | 15.4 | 1.6784 | −19 |
Parameter | Values |
---|---|
Bandwidth | 0.5–2 GHz |
VSWR | 2:1 |
Polarisation | Linear |
Radiation pattern | Directional |
Parameter | Values |
---|---|
Resonance frequency | 1.2 GHz |
Bandwidth | 0.8–1.8 GHz |
Reflection Coefficient | −28 |
VSWR | 2:1 |
Read range | 65 cm |
Radiation pattern | Ominidirectional |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
S, A.; Menon, S.K.; Donelli, M. Development of Enhanced Range, High Q, Passive, Chipless RFID Tags for Continuous Monitoring and Sensing Applications. Electronics 2022, 11, 127. https://doi.org/10.3390/electronics11010127
S A, Menon SK, Donelli M. Development of Enhanced Range, High Q, Passive, Chipless RFID Tags for Continuous Monitoring and Sensing Applications. Electronics. 2022; 11(1):127. https://doi.org/10.3390/electronics11010127
Chicago/Turabian StyleS, Aiswarya, Sreedevi K. Menon, and Massimo Donelli. 2022. "Development of Enhanced Range, High Q, Passive, Chipless RFID Tags for Continuous Monitoring and Sensing Applications" Electronics 11, no. 1: 127. https://doi.org/10.3390/electronics11010127
APA StyleS, A., Menon, S. K., & Donelli, M. (2022). Development of Enhanced Range, High Q, Passive, Chipless RFID Tags for Continuous Monitoring and Sensing Applications. Electronics, 11(1), 127. https://doi.org/10.3390/electronics11010127