Thermoelectric Sensor Coupled Yagi–Uda Nanoantenna for Infrared Detection
Abstract
1. Introduction
2. Antenna Designs and Simulation
3. Fabrication Methodology
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Howell, J.R.; Menguc, M.P.; Siegel, R. Thermal Radiation Heat Transfer; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Guan, Q.; Yin, X.; Guo, X.; Wang, G. A novel infrared motion sensing system for compressive classification of physical activity. IEEE Sens. J. 2016, 16, 2251–2259. [Google Scholar] [CrossRef]
- Bean, J.A.; Tiwari, B.; Szakmány, G.; Bernstein, G.H.; Fay, P.; Porod, W. Antenna length and polarization response of antenna-coupled MOM diode infrared detectors. Infrared Phys. Technol. 2010, 53, 182–185. [Google Scholar] [CrossRef]
- Caniou, J. Passive Infrared Detection: Theory and Applications; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Abbasi, Q.H.; Alomainy, A.; Jornet, J.M.; Han, C.; Chen, Y. Ieee Access Special Section Editorial: Nano-Antennas, Nano-Transceivers and Nano-Networks/Communications. IEEE Access 2018, 6, 8270–8272. [Google Scholar] [CrossRef]
- Nouri-Novin, S.; Sadatgol, M.; Zarrabi, F.B.; Bazgir, M. A hollow rectangular plasmonic absorber for nano biosensing applications. Optik 2019, 176, 14–23. [Google Scholar] [CrossRef]
- Sethi, W.T.; De Sagazan, O.; Vettikalladi, H.; Fathallah, H.; Himdi, M. Yagi-Uda nantenna for 1550 nanometers optical communication systems. Microw. Opt. Technol. Lett. 2018, 60, 2236–2242. [Google Scholar] [CrossRef]
- Barreda, A.I.; Saleh, H.; Litman, A.; González, F.; Geffrin, J.M.; Moreno, F. Scattering directionality of high refractive index dielectric particles: A note for solar energy harvesting. Physics, Simulation, and Photonic Engineering of Photovoltaic Devices VII. Int. Soc. Opt. Photonics 2018, 10527, 105270. [Google Scholar] [CrossRef]
- Chen, Y.; Ding, F.; Coello, V.; Bozhevolnyi, S.I. On-Chip Spectropolarimetry by Fingerprinting with Random Surface Arrays of Nanoparticles. ACS Photon 2018, 5, 1703–1710. [Google Scholar] [CrossRef]
- Jayaswal, G.; Belkadi, A.; Meredov, A.; Pelz, B.; Moddel, G.; Shamim, A. A Zero-Bias, Completely Passive 28 THz Rectenna for Energy Harvesting from Infrared (Waste Heat). In Proceedings of the 2018 IEEE/MTT-S International Microwave Symposium—IMS, Philadelphia, PA, USA, 10–15 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 355–358. [Google Scholar]
- El-Toukhy, Y.M.; Hussein, M.; Hameed, M.F.O.; Heikal, A.M.; Abd-Elrazzak, M.M.; Obayya, S.S.A. Optimized tapered dipole nanoantenna as efficient energy harvester. Opt. Express 2016, 24, A1107–A1122. [Google Scholar] [CrossRef]
- Yan, S.; Tumendemberel, B.; Zheng, X.; Volskiy, V.; VandenBosch, G.A.; Moshchalkov, V.V. Optimizing the bowtie nano-rectenna topology for solar energy harvesting applications. Sol. Energy 2017, 157, 259–262. [Google Scholar] [CrossRef]
- Jayaswal, G.; Belkadi, A.; Meredov, A.; Pelz, B.; Moddel, G.; Shamim, A. Optical rectification through an Al2O3 based MIM passive rectenna at 28.3 THz. Mater. Today Energy 2018, 7, 1–9. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, H.; Zhu, G.; Lee, S.; Lin, Z.-H.; Wang, Z.L. Flexible Hybrid Energy Cell for Simultaneously Harvesting Thermal, Mechanical, and Solar Energies. ACS Nano 2013, 7, 785–790. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.X.; Wang, X.L. Application and Development of Thermostat on Thermocouple Temperature Measurement. Available online: https://en.cnki.com.cn/Article_en/CJFDTotal-DILY200805022.htm (accessed on 26 July 2020).
- Sarma, U.; Boruah, P. Design and development of a high precision thermocouple based smart industrial thermometer with on line linearisation and data logging feature. Measurement 2010, 43, 1589–1594. [Google Scholar] [CrossRef]
- Alekseev, S.; Ziskin, M. Distortion of millimeter-wave absorption in biological media due to presence of thermocouples and other objects. IEEE Trans. Biomed. Eng. 2001, 48, 1013–1019. [Google Scholar] [CrossRef]
- Neikirk, P.D.; Rutledge, D.B. Self-heated thermocouples for far-infrared detection. Appl. Phys. Lett. 1982, 41, 400–402. [Google Scholar] [CrossRef][Green Version]
- Atkeson, P.L.C. Thermocouple-Triggered Igniter. U.S. Patent 5,166,468, 24 November 1992. [Google Scholar]
- Mendez-Lozoya, J.; de León-Zapata, R.D.; Guevara, E.; González, G.; González, F.J. Thermoelectric efficiency optimization of nanoantennas for solar energy harvesting. J. Nanophotonics 2019, 13, 026005. [Google Scholar] [CrossRef]
- Ghanim, A.; Hussein, M.; Hameed, M.F.O.; Obayya, S.S.A. Design considerations of super-directive nanoantennas for core-shell nanowires. J. Opt. Soc. Am. B 2017, 35, 182–188. [Google Scholar] [CrossRef]
- Zhao, H.; Gao, H.; Li, B. Theory and method for large electric field intensity enhancement in the nanoantenna gap. Appl. Opt. 2019, 58, 670–676. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, K.R.; Hussein, M.; Hameed, M.F.O.; Obayya, S.S.A. Super directive Yagi–Uda nanoantennas with an ellipsoid reflector for optimal radiation emission. J. Opt. Soc. Am. B 2017, 34, 2041. [Google Scholar] [CrossRef]
- Szakmany, G.P.; Orlov, A.O.; Bernstein, G.H.; Porod, W. Polarization-dependent response of single-and bi-metal antenna-coupled thermoelectrics for infrared detection. IEEE Trans. Terahertz Sci. Technol. 2015, 6, 884–891. [Google Scholar] [CrossRef]
- Russer, J.A.; Jirauschek, C.; Szakmany, G.P.; Orlov, A.O.; Bernstein, G.H.; Porod, W.; Lugli, P.; Russer, P. Antenna-coupled terahertz thermocouples. In Proceedings of the 2015 IEEE MTT-S International Microwave Symposium, Phoenix, AZ, USA, 17–22 May 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Mubarak, M.H.; Sidek, O.; Abdel-Rahman, M.; Mustaffa, M.T.; Kamal, A.S.M.; Mukras, S.M.S. Nano-antenna coupled infrared detector design. Sensors 2018, 18, 3714. [Google Scholar] [CrossRef] [PubMed]
- Ngo, H.D.; Chen, K.; Ørjan, H.S.; Doan, A.T.; Ngo, T.D.; Dao, T.D.; Ikeda, N.; Ohi, A.; Nabatame, T.; Nagao, T.; et al. Nanoantenna structure with mid-infrared plasmonic niobium-doped titanium oxide. Micromachines 2019, 11, 23. [Google Scholar] [CrossRef]
- Briones, E.; Ruiz-Cruz, R.; Briones, J.; Simon, J. Optimization of Seebeck nanoantenna-based infrared harvesters. Opt. Express 2019, 28, 116. [Google Scholar] [CrossRef] [PubMed]
- Chekini, A.; Neshat, M.; Sheikhaei, S. Infrared rectification based on electron field emission in nanoantennas for thermal energy harvesting. J. Mod. Opt. 2019, 67, 179–188. [Google Scholar] [CrossRef]
- Pinho, P. Optical Communication Technology; BoD–Books on Demand: Norderstedt, Germany, 2017. [Google Scholar]
- Taminiau, T.H.; Stefani, F.D.; van Hulst, N.F. Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna. Opt. Express 2008, 16, 10858–10866. [Google Scholar] [CrossRef]
- Computer Simulation Technology Version 2019. Available online: https://www.3ds.com/products-services/sim-ulia/products/cst-studio-suite/ (accessed on 10 June 2020).
- Johnson, P.B.; Christy, R.W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Hoque, A.; Islam, M.T.; Almutairi, A.F.; Alam, T.; Singh, M.J.; Amin, N. A polarization independent quasi-TEM Metamaterial absorber for X and Ku band sensing applications. Sensors 2018, 18, 4209. [Google Scholar] [CrossRef] [PubMed]
- Capolino, F. Applications of Metamaterials; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Episkopou, E.; Papantonis, S.; Otter, W.J.; Lucyszyn, S. Defining material parameters in commercial EM solvers for arbitrary metal-based THz structures. IEEE Trans. Terahertz Sci. Technol. 2012, 2, 513–524. [Google Scholar] [CrossRef]
- Wei, J.; Ren, Z.; Lee, C. Metamaterial technologies for miniaturized infrared spectroscopy: Light sources, sensors, filters, detectors, and integration. J. Appl. Phys. 2020, 128, 240901. [Google Scholar] [CrossRef]
- Szentpáli, B.; Matyi, G.; Fürjes, P.; László, E.; Battistig, G.; Bársony, I.; Károlyi, G.; Berceli, T. Thermoelectric-based THz antenna. Microsyst. Technol. 2012, 7, 849–856. [Google Scholar]
- Feng, L.; Lee, J.; Jiang, A.; Jung, S.; Belkin, M.A. Thermoelectric detector of light ellipticity. Nat. Commun. 2016, 7, 12994. [Google Scholar]
- Shimizu, Y.; Mizoshiri, M.; Mikami, M.; Ito, Y.; Sakurai, J.; Hata, S. Fabrication of flexible thermoelectric generators with a lens array for near-infrared solar light harvesting. In Proceedings of the 2015 IEEE MTT-S International Microwave Symposium, Belfast, UK, 21–25 January 2018. [Google Scholar]
- Szakmany, G.P.; Orlov, A.O.; Bernstein, G.H.; Porod, W. Nanoantenna arrays for infrared detection with single-metal nanothermocouples. Infrared Phys. Technol. 2017, 82, 44–49. [Google Scholar] [CrossRef]
- He, M.; Lin, Y.-J.; Chiu, C.-M.; Yang, W.; Zhang, B.; Yun, D.; Xie, Y.; Lin, Z.-H. A flexible photo-thermoelectric nanogenerator based on MoS2/PU photothermal layer for infrared light harvesting. Nano Energy 2018, 49, 588–595. [Google Scholar] [CrossRef]
Material | Refractive Index (n) | Extinction Coefficient (k) | Dielectric Permittivity (ϵr) | Seebeck Coefficient (μV/K) |
---|---|---|---|---|
Silicon | 3.47 | 0 | 12 | 440 |
Silicon dioxide | 1.444 | 0 | 2.08 | 88 |
Gold | 0.524 | 10.742 | −126.38 | 6.5 |
Nickel | 3 | 7.7 | −97.69 | −15 |
Nanoantenna Design | Peak Percentage Voltage Hike |
---|---|
Single-element quasi-Yagi–Uda with thermoelectric | 28% |
Nano-thermoelectric junction array | 55% |
Traditional Yagi–Uda array with thermoelectric | 80% |
Ref. | Incident Wavelength (µm) | Antenna Design | Thermoelectric Material | Output Voltage in % | Dimensions (µm) |
---|---|---|---|---|---|
[39] | 7.5 | Rod antennas | Gold–Nickel | 43 | 24 × 24 |
[40] | 0.68–0.105 | 270 Circular PDMS Lens | Gold and Copper Copper–Nickel | 4 | 5000 × 5000 |
[41] | 10.6 | Dipole | Gold–Nickel | 0.009 | 25 × 25 |
[42] | 0.8 | Te Nanowires | Te/PEDOT | 1.42 | 10,000 × 10,000 |
This Work | 1.55 | Yagi–Uda array | Gold–Nickel | 80 | 5 × 55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sethi, W.T.; De Sagazan, O.; Himdi, M.; Vettikalladi, H.; Alshebeili, S.A. Thermoelectric Sensor Coupled Yagi–Uda Nanoantenna for Infrared Detection. Electronics 2021, 10, 527. https://doi.org/10.3390/electronics10050527
Sethi WT, De Sagazan O, Himdi M, Vettikalladi H, Alshebeili SA. Thermoelectric Sensor Coupled Yagi–Uda Nanoantenna for Infrared Detection. Electronics. 2021; 10(5):527. https://doi.org/10.3390/electronics10050527
Chicago/Turabian StyleSethi, Waleed Tariq, Olivier De Sagazan, Mohamed Himdi, Hamsakutty Vettikalladi, and Saleh A. Alshebeili. 2021. "Thermoelectric Sensor Coupled Yagi–Uda Nanoantenna for Infrared Detection" Electronics 10, no. 5: 527. https://doi.org/10.3390/electronics10050527
APA StyleSethi, W. T., De Sagazan, O., Himdi, M., Vettikalladi, H., & Alshebeili, S. A. (2021). Thermoelectric Sensor Coupled Yagi–Uda Nanoantenna for Infrared Detection. Electronics, 10(5), 527. https://doi.org/10.3390/electronics10050527