# Geometric Simplifications of Natural Caves in Ray-Tracing-Based Propagation Modelling

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Ray-Tracing Limits in Irregular Environments

## 3. Environment Simplification

## 4. Simulation Setup and Measurement Campaign

#### 4.1. Caves Physical Properties

#### 4.2. Measurements

#### 4.3. Signal3D Ray Tracer

#### 4.4. Simulation Parameters

## 5. Results and Discussion

#### 5.1. Accuracy of Simplified Models

^{2}average triangle size performs equally well as the grid of 1610 facets and 0.16 m

^{2}average triangle size of the vertex clustering simplification.

#### 5.2. Computational Time Gains

## 6. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Hrovat, A.; Kandus, G.; Javornik, T. A survey of radio propagation modeling for tunnels. IEEE Commun. Surveys Tuts.
**2014**, 16, 658–669. [Google Scholar] [CrossRef] - Gerasimov, J.; Balal, N.; Liokumovitch, E.; Richter, Y.; Gerasimov, M.; Bamani, E.; Pinhasi, G.A.; Pinhasi, Y. Scaled Modeling and Measurement for Studying Radio Wave Propagation in Tunnels. Electronics
**2021**, 10, 53. [Google Scholar] [CrossRef] - Huang, Y.; Boyle, K. Antennas: From Theory to Practice; Wiley: Chichester, UK, 2008. [Google Scholar]
- Molina-Garcia-Pardo, J.M.; Lienard, M.; Degauque, P. Propagation in Tunnels: Experimental Investigations and Channel Modeling in a Wide Frequency Band for MIMO Applications. EURASIP J. Wirel. Commun. Netw.
**2009**, 2009, 9. [Google Scholar] [CrossRef] [Green Version] - Hrovat, A.; Kandus, G.; Javornik, T. Four-slope channel model for path loss prediction in tunnels at 400 MHz. IET Microwaves Antennas Propag.
**2010**, 4, 571–582. [Google Scholar] [CrossRef] - Klemenschits, T.; Bonek, E. Radio coverage of road tunnels at 900 and 1800 MHz by discrete antennas. In Proceedings of the 5th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Wireless Networks—Catching the Mobile Future, Hague, The Netherlands, 18–23 September 1994; Volume 2, pp. 411–415. [Google Scholar] [CrossRef]
- Zhang, Y. Novel model for propagation loss prediction in tunnels. IEEE Trans. Veh. Technol.
**2003**, 52, 1308–1314. [Google Scholar] [CrossRef] - Zlot, R.; Bosse, M. Three-dimensional mobile mapping of caves. J. Cave Karst Stud.
**2014**, 76, 191–206. [Google Scholar] [CrossRef] - Bedford, M.D.; Hrovat, A.; Kennedy, G.; Javornik, T.; Foster, P. Modeling Microwave Propagation in Natural Caves Using LiDAR and Ray Tracing. IEEE Trans. Antennas Propag.
**2020**, 68, 3878–3888. [Google Scholar] [CrossRef] - Al-Saman, A.; Cheffena, M.; Elijah, O.; Al-Gumaei, Y.A.; Abdul Rahim, S.K.; Al-Hadhrami, T. Survey of Millimeter-Wave Propagation Measurements and Models in Indoor Environments. Electronics
**2021**, 10, 1653. [Google Scholar] [CrossRef] - Zhou, C.; Plass, T.; Jacksha, R.; Waynert, J.A. RF Propagation in Mines and Tunnels: Extensive measurements for vertically, horizontally, and cross-polarized signals in mines and tunnels. IEEE Trans. Antennas Propag.
**2015**, 57, 88–102. [Google Scholar] [CrossRef] - Bedford, M.D.; Kennedy, G.A.; Foster, P.J. Radio transmission characteristics in tunnel environments. Min. Technol.
**2017**, 126, 77–87. [Google Scholar] [CrossRef] - Zhou, C.; Jacksha, R. Modeling and measurement of wireless channels for underground mines. In Proceedings of the IEEE International Symposium on Antennas and Propagation (APSURSI), Fajardo, Puerto Rico, 26 June–1 July 2016; pp. 1253–1254. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C. Ray Tracing and Modal Methods for Modeling Radio Propagation in Tunnels With Rough Walls. IEEE Trans. Antennas Propag.
**2017**, 65, 2624–2634. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Soo, Q.P.; Lim, S.Y.; Gin Lim, D.W. Investigation of rough surfaces for propagation modeling in caves. In Proceedings of the IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2018; pp. 555–556. [Google Scholar] [CrossRef]
- Rak, M.; Pechac, P. UHF Propagation in Caves and Subterranean Galleries. IEEE Trans. Antennas Propag.
**2007**, 55, 1134–1138. [Google Scholar] [CrossRef] - Bedford, M.D.; Kennedy, G.A. Modeling Microwave Propagation in Natural Caves Passages. IEEE Trans. Antennas Propag.
**2014**, 62, 6463–6471. [Google Scholar] [CrossRef] - Masson, E.; Combeau, P.; Berbineau, M.; Vauzelle, R.; Pousset, Y. Radio wave propagation in arched cross section tunnels simulations and measurements. J. Commun.
**2009**, 4, 276–283. [Google Scholar] [CrossRef] - Futatsumori, S.; Morioka, K.; Kohmura, A.; Yonemoto, N.; Hikage, T.; Yahagi, K.; Shirafune, M.; Yamamoto, M.; Nojima, T.; Narahashi, S. Aircraft electromagnetic field estimation for wireless avionics intra-communication band using large-scale FDTD analysis — Field estimation of A320 class passenger aircraft at 4 GHz band. In Proceedings of the International Applied Computational Electromagnetics Society Symposium—Italy (ACES), Firenze, Italy, 26–30 March 2017; pp. 1–2. [Google Scholar] [CrossRef]
- Masson, E.; Cocheril, Y.; Combeau, P.; Aveneau, L.; Berbineau, M.; Vauzelle, R.; Fayt, E. Radio wave propagation in curved rectangular tunnels at 5.8 GHz for metro applications. In Proceedings of the 11th International Conference on ITS Telecommunications, St. Petersburg, Russia, 23–25 August 2011; pp. 81–85. [Google Scholar] [CrossRef]
- Fuschini, F.; Vitucci, E.M.; Barbiroli, M.; Falciasecca, G.; Degli-Esposti, V. Ray tracing propagation modeling for future small-cell and indoor applications: A review of current techniques. Radio Sci.
**2015**, 50, 469–485. [Google Scholar] [CrossRef] [Green Version] - Durgin, G.; Patwari, N.; Rappaport, T. An advanced 3D ray launching method for wireless propagation prediction. In Proceedings of the IEEE 47th Vehicular Technology Conference, Phoenix, AZ, USA, 4–7 May 1997; Technology in Motion. Volume 2, pp. 785–789. [Google Scholar] [CrossRef]
- Saunders, S.; Aragón-Zavala, A. Antennas and Propagation for Wireless Communication Systems, 2nd ed.; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Keller, J.B. Geometrical Theory of Diffraction. J. Opt. Soc. Am.
**1962**, 52, 116–130. [Google Scholar] [CrossRef] - Tao, Y.; Lin, H.; Bao, H. GPU-Based Shooting and Bouncing Ray Method for Fast RCS Prediction. IEEE Trans. Antennas Propag.
**2010**, 58, 494–502. [Google Scholar] [CrossRef] - Parker, S.G.; Bigler, J.; Dietrich, A.; Friedrich, H.; Hoberock, J.; Luebke, D.; McAllister, D.; McGuire, M.; Morley, K.; Robison, A.; et al. OptiX: A General Purpose Ray Tracing Engine. ACM Trans. Graph.
**2010**, 29. [Google Scholar] [CrossRef] - Novak, R. Bloom filter for double-counting avoidance in radio frequency ray tracing. IEEE Trans. Antennas Propag.
**2019**, 67, 2176–2190. [Google Scholar] [CrossRef] - Luebke, D. A developer’s survey of polygonal simplification algorithms. IEEE Comput. Graph. Appl.
**2001**, 21, 24–35. [Google Scholar] [CrossRef] - Rossignac, J.; Borrel, P. Multi-resolution 3D approximations for rendering complex scenes. In Modeling in Computer Graphics; Falcidieno, B., Kunii, T.L., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 455–465. [Google Scholar]
- Yirci, M. Polygonal Mesh Simplification and Regular Remeshing. Master’s Thesis, Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara, Turkey, 2008. [Google Scholar]
- Garland, M.; Heckbert, P.S. Surface Simplification Using Quadric Error Metrics. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 3–8 August 1997; ACM Press/Addison-Wesley Publishing Co.: New York, NY, USA, 1997. SIGGRAPH ’97. pp. 209–216. [Google Scholar] [CrossRef] [Green Version]
- Cignoni, P.; Callieri, M.; Corsini, M.; Dellepiane, M.; Ganovelli, F.; Ranzuglia, G. MeshLab: An Open-Source Mesh Processing Tool. In Eurographics Italian Chapter Conference; Scarano, V., Chiara, R.D., Erra, U., Eds.; The Eurographics Association: Salerno, Italy, 2–4 July 2008; pp. 129–136. [Google Scholar] [CrossRef]
- Signal3D. Available online: http://e6.is.si/tools/signal3d/ (accessed on 14 September 2021).
- Dudley, D.G.; Lienard, M.; Mahmoud, S.F.; Degauque, P. Wireless propagation in tunnels. IEEE Trans. Antennas Propag.
**2007**, 49, 11–26. [Google Scholar] [CrossRef] - Molina-Garcia-Pardo, J.M.; Lienard, M.; Degauque, P.; Dudley, D.G.; Juan-Llacer, L. Interpretation of MIMO Channel Characteristics in Rectangular Tunnels From Modal Theory. IEEE Trans. Veh. Technol.
**2008**, 57, 1974–1979. [Google Scholar] [CrossRef] - Wang, T.-S.; Yang, C.-F. Simulations and Measurements of Wave Propagations in Curved Road Tunnels for Signals From GSM Base Stations. IEEE Trans. Antennas Propag.
**2006**, 54, 2577–2584. [Google Scholar] [CrossRef]

**Figure 1.**Signal3D screen snapshots of (

**a**) Skirwith Cave and (

**b**) the KMC Roof Tunnel; both caves are located in the UK.

**Figure 2.**Measured vs. modelled path loss for the two caves at the three selected frequencies; ray tracing and modal theory path loss is compared against the measured values. Modal theory results shown here were reported in [9].

**Figure 3.**The accuracy of ray tracing is evaluated against the measurements in a number of simplified geometrical descriptions of the KMC Roof Tunnel using (

**a**) vertex clustering and (

**b**) edge removal simplifications.

**Figure 4.**The accuracy of ray tracing is evaluated against the measurements in a number of simplified geometrical descriptions of Skirwith Cave using (

**a**) vertex clustering and (

**b**) edge removal simplifications. The missing values in the case of vertex clustering correspond to impassable geometries.

**Figure 5.**Reduction in ray-tracing simulation time in the KMC Roof Tunnel with (

**a**) vertex clustering and (

**b**) edge removal simplifications; the reduction is practically independent of transmission frequency.

**Figure 6.**The reduction in simulation time of the simplified Skirwith Cave geometries in case of (

**a**) vertex clustering is stopped early as the cave becomes impassable, whereas the simulation time of the simplified models of Skirwith Cave using (

**b**) the edge removal algorithm can be halved.

Frequency | Tx Power | Antenna Gain | Antenna Length |
---|---|---|---|

(GHz) | (dBm) | (dBi) | (mm) |

1.2969 | 29 | 5.5 | 340 |

2.3209 | 30 | 9 | 625 |

5.8020 | 22 | 11 | 700 |

Frequency (GHz) | $\mathit{\sigma}$ (KMC Roof) | $\mathit{\sigma}$ (Skirwith) | ||
---|---|---|---|---|

Modal ${}^{1}$ | Ray | Modal ${}^{1}$ | Ray | |

1.2969 | 4.54 | 4.69 | 7.11 | 9.15 |

2.3209 | 9.52 | 6.24 | 9.02 | 6.81 |

5.8020 | 7.89 | 3.40 | 5.74 | 7.77 |

^{1}Values reported in [9].

Cave | Simplification Algorithm | No. of Triangles | Avg. Triangle Size (cm ^{2}) | Simp. VLevel (%) |
---|---|---|---|---|

KMC Roof | None | 53,540 | 53 | 0.0 |

Vertex clustering | 26,686 | 106 | 50.2 | |

13,376 | 209 | 75.0 | ||

6769 | 406 | 87.4 | ||

3285 | 816 | 93.9 | ||

1610 | 1624 | 97.0 | ||

838 | 3025 | 98.4 | ||

614 | 4023 | 98.9 | ||

376 | 6198 | 99.3 | ||

Edge removal | 26,685 | 107 | 50.2 | |

13,375 | 213 | 75.0 | ||

6769 | 420 | 87.4 | ||

3285 | 865 | 93.9 | ||

1610 | 1757 | 97.0 | ||

838 | 3341 | 98.4 | ||

613 | 4519 | 98.9 | ||

312 | 8633 | 99.4 | ||

211 | 12,988 | 99.6 | ||

Skirwith | None | 54,427 | 60 | 0.0 |

Vertex clustering | 27,400 | 119 | 49.7 | |

13,625 | 239 | 75.0 | ||

6905 | 464 | 87.3 | ||

3400 | 905 | 93.8 | ||

Edge removal | 27,399 | 120 | 49.7 | |

13,625 | 241 | 74.6 | ||

6904 | 476 | 87.3 | ||

3400 | 964 | 93.8 | ||

1646 | 1972 | 97.0 | ||

829 | 3831 | 98.5 | ||

428 | 7241 | 99.2 | ||

320 | 9752 | 99.4 |

Simp. Algorithm | Vertex Clustering | Edge Removal | ||||
---|---|---|---|---|---|---|

Frequency (GHz) | 1.2969 | 2.3209 | 5.802 | 1.2969 | 2.3209 | 5.802 |

No. of Triangles | Err Std | Err Std | ||||

53,540 | 4.69 | 6.24 | 3.40 | 4.69 | 6.24 | 3.40 |

26,686 | 5.07 | 6.27 | 3.84 | 4.41 | 6.13 | 3.34 |

13,376 | 5.49 | 6.26 | 3.85 | 4.47 | 6.71 | 3.46 |

6769 | 5.17 | 6.28 | 3.98 | 5.28 | 6.84 | 3.28 |

3285 | 4.41 | 6.58 | 3.79 | 5.12 | 6.18 | 4.25 |

1610 | 5.71 | 8.27 | 3.75 | 5.23 | 6.74 | 4.09 |

838 | 19.97 | 22.50 | 15.46 | 5.39 | 6.72 | 3.57 |

614 | 15.78 | 18.21 | 11.65 | 5.65 | 7.30 | 4.32 |

376 | 57.23 | 55.83 | 56.63 | |||

312 | 7.27 | 7.82 | 4.99 | |||

211 | 12.53 | 14.58 | 8.45 |

Simp. Algorithm | Vertex Clustering | Edge Removal | ||||
---|---|---|---|---|---|---|

Frequency (GHz) | 1.2969 | 2.3209 | 5.802 | 1.2969 | 2.3209 | 5.802 |

No. of Triangles | Err Std | Err Std | ||||

54,427 | 9.15 | 6.81 | 7.77 | 9.15 | 6.81 | 7.77 |

27,400 | 9.59 | 6.88 | 7.96 | 8.35 | 6.38 | 7.92 |

13,625 | 10.01 | 5.74 | 5.81 | 8.93 | 6.51 | 7.57 |

6905 | 9.58 | 5.74 | 5.86 | 9.13 | 7.01 | 8.85 |

3400 | 10.04 | 5.74 | 5.20 | 8.10 | 7.03 | 8.93 |

1646 | 8.69 | 6.56 | 7.21 | |||

829 | 7.59 | 8.68 | 11.53 | |||

428 | 5.30 | 7.62 | 11.14 | |||

321 | 7.44 | 9.03 | 12.58 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Novak, R.; Hrovat, A.; Bedford, M.D.; Javornik, T.
Geometric Simplifications of Natural Caves in Ray-Tracing-Based Propagation Modelling. *Electronics* **2021**, *10*, 2914.
https://doi.org/10.3390/electronics10232914

**AMA Style**

Novak R, Hrovat A, Bedford MD, Javornik T.
Geometric Simplifications of Natural Caves in Ray-Tracing-Based Propagation Modelling. *Electronics*. 2021; 10(23):2914.
https://doi.org/10.3390/electronics10232914

**Chicago/Turabian Style**

Novak, Roman, Andrej Hrovat, Michael D. Bedford, and Tomaž Javornik.
2021. "Geometric Simplifications of Natural Caves in Ray-Tracing-Based Propagation Modelling" *Electronics* 10, no. 23: 2914.
https://doi.org/10.3390/electronics10232914