Real-Time Application of Computer Graphics Improvement Techniques Using Hyperspectral Textures in a Virtual Reality System
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. Color Characterization of Head Mounted Display
3.2. 3D Reconstruction with a Scanner
3.3. Hyperspectral Texture Datasets
3.4. Light Sources Measurements
4. System Development
4.1. Light Representations in a Virtual Reality System
4.2. Graphics and Lighting Settings
4.3. Algorithms for Hyperspectral Rendering
Algorithm 1: Algorithm transformation from XYZ values to RGB. |
Algorithm 2: Gamma function example. |
5. Results
5.1. Checking Correspondence between Reality and Virtual World
5.2. Color Differences Found Using Both Color Management Procedures
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Greenwood, J. The Third Industrial Revolution: Technology, Productivity, and Income Inequality; Number 435; American Enterprise Institute: Washington, DC, USA, 1997. [Google Scholar]
- Javidi, B.; Okano, F. Three-Dimensional Television, Video, and Display Technologies; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Polo, M.E.; Felicísimo, Á.M. Analysis of uncertainty and repeatability of a low-cost 3D laser scanner. Sensors 2012, 12, 9046–9054. [Google Scholar] [CrossRef] [Green Version]
- Aicardi, I.; Chiabrando, F.; Lingua, A.M.; Noardo, F. Recent trends in cultural heritage 3D survey: The photogrammetric computer vision approach. J. Cult. Herit. 2018, 32, 257–266. [Google Scholar] [CrossRef]
- Barba, S.; Barbarella, M.; Di Benedetto, A.; Fiani, M.; Gujski, L.; Limongiello, M. Accuracy assessment of 3D photogrammetric models from an unmanned aerial vehicle. Drones 2019, 3, 79. [Google Scholar] [CrossRef] [Green Version]
- Choi, I.; Kim, M.; Gutierrez, D.; Jeon, D.; Nam, G. High-Quality Hyperspectral Reconstruction Using a Spectral Prior; Technical Report; ACM: New York, NY, USA, 2017. [Google Scholar]
- Durán-Dominguez, G.; Felicisimo, A.; Polo, M. 3D study of cultural heritage for conservation: Reliability of the portable 3D laser scanners. In Proceedings of the International Congress on Science and Technology for the Conservation of Cultural Heritage, Seville, Spain, 24–27 June 2014; pp. 357–362. [Google Scholar]
- Wang, Y.; Liu, W.; Meng, X.; Fu, H.; Zhang, D.; Kang, Y.; Feng, R.; Wei, Z.; Zhu, X.; Jiang, G. Development of an immersive virtual reality head-mounted display with high performance. Appl. Opt. 2016, 55, 6969–6977. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Hua, H. High dynamic range head mounted display based on dual-layer spatial modulation. Opt. Express 2017, 25, 23320–23333. [Google Scholar] [CrossRef] [Green Version]
- Cwierz, H.; Díaz-Barrancas, F.; Llinás, J.G.; Pardo, P.J. On the Validity of Virtual Reality Applications for Professional Use: A Case Study on Color Vision Research and Diagnosis. IEEE Access 2021, 9, 138215–138224. [Google Scholar] [CrossRef]
- Kongsilp, S.; Dailey, M.N. Motion parallax from head movement enhances stereoscopic displays by improving presence and decreasing visual fatigue. Displays 2017, 49, 72–79. [Google Scholar] [CrossRef]
- Lambooij, M.; Fortuin, M.; Heynderickx, I.; IJsselsteijn, W. Visual discomfort and visual fatigue of stereoscopic displays: A review. J. Imaging Sci. Technol. 2009, 53, 30201. [Google Scholar] [CrossRef] [Green Version]
- Wald, I.; Dietrich, A.; Benthin, C.; Efremov, A.; Dahmen, T.; Gunther, J.; Havran, V.; Seidel, H.P.; Slusallek, P. Applying ray tracing for virtual reality and industrial design. In Proceedings of the IEEE Symposium on Interactive Ray Tracing, Salt Lake City, UT, USA, 18–20 September 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 177–185. [Google Scholar]
- Fujita, M.; Harada, T. Foveated real-time ray tracing for virtual reality headset. In Proceedings of the SIGGRAPH Asia, Shenzhen, China, 3–6 December 2014. [Google Scholar]
- Clay, V.; König, P.; Koenig, S. Eye tracking in virtual reality. J. Eye Mov. Res. 2019, 12. [Google Scholar] [CrossRef]
- Seay, A.F.; Krum, D.M.; Hodges, L.; Ribarsky, W. Simulator sickness and presence in a high FOV virtual environment. In Proceedings of the IEEE Virtual Reality, Yokohama, Japan, 13–17 March 2001. [Google Scholar]
- Hilton, P. Ultra-Wide FOV Retinal Display; Physics Applications Ltd.: Dayton, OH, USA, 2008; Volume 56. [Google Scholar]
- Hvass, J.; Larsen, O.; Vendelbo, K.; Nilsson, N.; Nordahl, R.; Serafin, S. Visual realism and presence in a virtual reality game. In Proceedings of the 3DTV Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON), Piscataway, NJ, USA, 7–9 June 2017; pp. 1–4. [Google Scholar]
- Kim, M.H. 3D Graphics Techniques for Capturing and Inspecting Hyperspectral Appearance. In Proceedings of the International Symposium on Ubiquitous Virtual Reality, Daejeon, Korea, 10–13 July 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 15–18. [Google Scholar]
- Guimarães, T.T.; Mariani, D.H.D.; Kupssinskü, L.S.; Rossa, P.; Horota, R.K.; De Freitas, R.; Roupinha, L.; Weppo, B.E.; Weschenfelder, A.; Spigolon, A.L.D.; et al. Mosis Lab Hyperspectral-Visualization and Correlation of Hyperspectral Data on Immersive Virtual Reality. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 5747–5750. [Google Scholar]
- Bruno, F.; Bruno, S.; De Sensi, G.; Luchi, M.L.; Mancuso, S.; Muzzupappa, M. From 3D reconstruction to virtual reality: A complete methodology for digital archaeological exhibition. J. Cult. Herit. 2010, 11, 42–49. [Google Scholar] [CrossRef]
- Hill, B.; Roger, T.; Vorhagen, F.W. Comparative analysis of the quantization of color spaces on the basis of the CIELAB color-difference formula. Acm Trans. Graph. (TOG) 1997, 16, 109–154. [Google Scholar] [CrossRef]
- Ibraheem, N.A.; Hasan, M.M.; Khan, R.Z.; Mishra, P.K. Understanding color models: A review. ARPN J. Sci. Technol. 2012, 2, 265–275. [Google Scholar]
- Diaz-Barrancas, F.; Cwierz, H.; Pardo, P.; Perez, A.; Suero, M. Improvement of realism sensation in virtual reality scenes applying spectral and colour management techniques. In Proceedings of the 25th Symposium of the International Colour Vision Society (ICVS 2019), Riga, Latvia, 5–9 July 2019; p. 79. [Google Scholar]
- Rhyne, T.M. Applying color theory to digital media and visualization. In Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems, Denver, CO, USA, 6–11 May 2017; pp. 1264–1267. [Google Scholar]
- Akbarinia, A.; Gegenfurtner, K.R. Color metamerism and the structure of illuminant space. JOSAA 2018, 35, B231–B238. [Google Scholar] [CrossRef]
- Cwierz, H.C.; Diaz-Barrancas, F.; Pardo, P.J.; Perez, A.L.; Suero, M.I. Colour Management in Virtual Reality applied to Lighting Simulations. AIC Lisbon 2018. [Google Scholar] [CrossRef]
- Diaz-Barrancas, F.; Cwierz, H.C.; Pardo, P.J.; Perez, A.L.; Suero, M.I. Visual fidelity improvement in virtual reality through spectral textures applied to lighting simulations. Electron. Imaging 2020, 2020, 259-1–259-4. [Google Scholar] [CrossRef]
- Díaz-Barrancas, F.; Cwierz, H.; Pardo, P.J.; Pérez, Á.L.; Suero, M.I. Spectral Color Management in Virtual Reality Scenes. Sensors 2020, 20, 5658. [Google Scholar] [CrossRef]
- Penczek, J.; Austin, R.L.; Obheroi, S.; Hasan, M.; Cook, G.J.; Boynton, P.A. 54-5: Measuring Direct Retinal Projection Displays. In SID Symposium Digest of Technical Papers; Wiley Online Library: Hoboken, NJ, USA, 2020; Volume 51, pp. 807–810. [Google Scholar]
- Hong, H. A measurement method of the focal distance of the virtual image in an augmented reality or virtual reality device. J. Soc. Inf. Disp. 2021, 29, 230–236. [Google Scholar] [CrossRef]
- Varshneya, R.; Draper, R.S.; Penczek, J.; Pixton, B.M.; Nicholas, T.F.; Boynton, P.A. 50-4: Standardizing Fundamental Criteria for Near Eye Display Optical Measurements: Determining the Eye-box. In SID Symposium Digest of Technical Papers; Wiley Online Library: Hoboken, NJ, USA, 2020; Volume 51, pp. 742–745. [Google Scholar]
- Pardo, P.J.; Martínez-Borreguero, G.; Pérez, Á.L.; Suero, M.I. Worldwide Uniformity of Color Reproduction in Handheld Video-Game Consoles and Applications. J. Disp. Technol. 2012, 8, 233–240. [Google Scholar] [CrossRef]
- Ennis, R.; Schiller, F.; Toscani, M.; Gegenfurtner, K.R. Hyperspectral database of fruits and vegetables. JOSAA 2018, 35, B256–B266. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Barrancas, F.; Cwierz, H.C.; Pardo, P.J.; Perez, A.L.; Suero, M.I. Colour appearance in immersive three-dimensional virtual environments. Color. Technol. 2021, 137, 38–43. [Google Scholar] [CrossRef]
- Hård, A.; Sivik, L.; Tonnquist, G. NCS, natural color system—From concept to research and applications. Part I. Color Res. Appl. 1996, 21, 180–205. [Google Scholar] [CrossRef]
- Smith, N.; Whitfield, T.; Wiltshire, T. Accuracy of the NCS atlas samples. Color Res. Appl. 1991, 16, 108–113. [Google Scholar] [CrossRef]
NCS Samples | 00 TL84 Light Source | 00 D50 Light Source | 00 A Light Source | 00 D65 Light Source |
---|---|---|---|---|
S 0300-N | 1.46 | 2.52 | 2.09 | 1.75 |
S 1080-Y | 4.16 | 2.75 | 3.26 | 2.84 |
S 1565-G | 3.45 | 3.56 | 2.94 | 3.26 |
S 1080-R | 5.25 | 6.05 | 4.70 | 6.20 |
S 1565-B | 2.74 | 3.74 | 3.64 | 3.07 |
S 2060-B50G | 2.88 | 3.98 | 3.39 | 3.48 |
S 1075-G50Y | 3.20 | 3.38 | 3.36 | 2.96 |
S 0585-Y50R | 3.33 | 3.18 | 2.62 | 3.33 |
S 3055-R50B | 5.23 | 4.92 | 4.18 | 4.32 |
S 0530-Y30R | 2.41 | 1.85 | 1.73 | 2.90 |
Mean Error (Std) | 3.41 (1.19) | 3.60 (1.21) | 3.19 (0.90) | 3.41 (1.17) |
Objects | 00 Without Hyperspectral Textures | 00 Using Hyperspectral Textures | ||||||
---|---|---|---|---|---|---|---|---|
A | D50 | D65 | TL84 | A | D50 | D65 | TL84 | |
ColorChecker sample 1 | 6.28 | 4.98 | 5.06 | 4.76 | 3.35 | 2.83 | 1.37 | 2.89 |
ColorChecker sample 2 | 4.94 | 6.79 | 6.18 | 5.55 | 7.08 | 6.24 | 3.01 | 6.93 |
ColorChecker sample 3 | 5.46 | 4.39 | 2.72 | 4.65 | 4.95 | 2.52 | 0.74 | 3.56 |
ColorChecker sample 4 | 8.32 | 5.08 | 4.63 | 6.50 | 3.63 | 1.13 | 0.81 | 1.13 |
ColorChecker sample 5 | 9.61 | 6.19 | 4.30 | 7.85 | 6.84 | 2.94 | 1.62 | 3.24 |
ColorChecker sample 6 | 12.50 | 7.61 | 6.29 | 9.06 | 6.33 | 4.35 | 1.72 | 5.36 |
ColorChecker sample 7 | 7.06 | 7.72 | 7.81 | 7.83 | 2.61 | 4.98 | 1.40 | 5.08 |
ColorChecker sample 8 | 17.49 | 15.11 | 11.12 | 15.85 | 13.04 | 3.78 | 0.79 | 8.72 |
ColorChecker sample 9 | 3.21 | 2.96 | 3.90 | 2.73 | 3.74 | 3.88 | 1.38 | 4.60 |
ColorChecker sample 10 | 4.50 | 1.38 | 0.71 | 1.91 | 5.68 | 1.38 | 1.47 | 1.77 |
ColorChecker sample 11 | 9.14 | 5.74 | 4.51 | 6.56 | 4.24 | 2.07 | 1.24 | 2.49 |
ColorChecker sample 12 | 10.86 | 8.39 | 7.27 | 9.15 | 4.66 | 3.82 | 0.86 | 4.74 |
ColorChecker sample 13 | 21.12 | 16.18 | 12.69 | 19.41 | 16.84 | 8.94 | 2.34 | 13.22 |
ColorChecker sample 14 | 6.01 | 5.17 | 4.06 | 5.79 | 2.93 | 1.22 | 1.20 | 0.24 |
ColorChecker sample 15 | 6.07 | 3.87 | 4.33 | 1.28 | 7.11 | 2.76 | 1.28 | 2.86 |
ColorChecker sample 16 | 12.78 | 9.88 | 8.08 | 10.63 | 7.19 | 3.56 | 1.61 | 4.90 |
ColorChecker sample 17 | 3.39 | 1.71 | 1.73 | 1.07 | 4.54 | 2.13 | 0.48 | 2.16 |
ColorChecker sample 18 | 8.36 | 5.80 | 4.32 | 6.95 | 5.31 | 3.68 | 0.57 | 4.95 |
ColorChecker sample 19 | 2.04 | 2.04 | 2.04 | 2.04 | 2.04 | 2.04 | 2.04 | 2.04 |
ColorChecker sample 20 | 6.58 | 7.03 | 7.41 | 7.62 | 2.50 | 3.14 | 0.89 | 2.67 |
ColorChecker sample 21 | 7.70 | 5.21 | 4.28 | 5.03 | 1.15 | 2.97 | 1.01 | 2.65 |
ColorChecker sample 22 | 1.89 | 1.25 | 3.13 | 2.91 | 2.89 | 1.40 | 1.35 | 0.98 |
ColorChecker sample 23 | 2.82 | 4.86 | 4.58 | 5.15 | 2.88 | 0.65 | 1.26 | 1.65 |
ColorChecker sample 24 | 3.96 | 2.84 | 7.18 | 2.93 | 8.36 | 4.10 | 2.77 | 5.61 |
Average ColorChecker samples | 7.59 | 5.93 | 5.35 | 6.38 | 5.41 | 3.19 | 1.38 | 3.94 |
Lemon | 6.34 | 7.39 | 8.64 | 7.00 | 1.22 | 0.46 | 0.73 | 0.55 |
Tomate | 4.88 | 10.43 | 13.07 | 8.25 | 2.81 | 5.18 | 2.39 | 4.48 |
Green apple | 6.00 | 7.96 | 5.86 | 5.44 | 3.24 | 1.99 | 1.67 | 2.56 |
Orange | 11.18 | 13.23 | 14.34 | 8.03 | 1.46 | 3.20 | 3.33 | 3.32 |
Average fruits | 7.10 | 9.75 | 10.48 | 7.18 | 2.18 | 2.71 | 2.03 | 2.73 |
Green Cube | 3.51 | 1.85 | 2.98 | 3.42 | 1.66 | 1.85 | 1.88 | 1.91 |
Yellow Sphere | 3.27 | 3.79 | 3.76 | 3.62 | 2.47 | 3.01 | 2.90 | 2.86 |
Red Prism | 4.14 | 5.16 | 5.40 | 4.81 | 3.75 | 4.89 | 4.91 | 4.64 |
Blue Pyramid | 3.24 | 3.81 | 4.13 | 4.67 | 2.08 | 3.68 | 4.09 | 3.22 |
Average figures | 3.54 | 3.65 | 4.07 | 4.13 | 2.49 | 3.36 | 3.44 | 3.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-Barrancas, F.; Cwierz, H.; Pardo, P.J. Real-Time Application of Computer Graphics Improvement Techniques Using Hyperspectral Textures in a Virtual Reality System. Electronics 2021, 10, 2852. https://doi.org/10.3390/electronics10222852
Díaz-Barrancas F, Cwierz H, Pardo PJ. Real-Time Application of Computer Graphics Improvement Techniques Using Hyperspectral Textures in a Virtual Reality System. Electronics. 2021; 10(22):2852. https://doi.org/10.3390/electronics10222852
Chicago/Turabian StyleDíaz-Barrancas, Francisco, Halina Cwierz, and Pedro J. Pardo. 2021. "Real-Time Application of Computer Graphics Improvement Techniques Using Hyperspectral Textures in a Virtual Reality System" Electronics 10, no. 22: 2852. https://doi.org/10.3390/electronics10222852
APA StyleDíaz-Barrancas, F., Cwierz, H., & Pardo, P. J. (2021). Real-Time Application of Computer Graphics Improvement Techniques Using Hyperspectral Textures in a Virtual Reality System. Electronics, 10(22), 2852. https://doi.org/10.3390/electronics10222852