Design and Implementation of a Single-Stage PFC Active-Clamp Flyback Converter with Dual Transformers
Abstract
:1. Introduction
2. Proposed AC-DC Converter
2.1. The Proposed Circuit Structure
2.2. Principle of Operation
2.2.1. Mode 1—(t0 < t < t1)
2.2.2. Mode 2—(t1 < t < t2)
2.2.3. Mode 3—(t2 < t < t3)
2.2.4. Mode 4—(t3 < t < t4)
2.2.5. Mode 5—(t4 < t < t5)
2.2.6. Mode 6—(t5 < t < t6)
2.3. Design Consideration
2.4. Switch Utilization Ratio
2.5. Steady-State Voltage Gain with Varying Duty
3. Experimental and Simulation Result
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dawson, G.; Chan, I.N. A Modified Zero-Voltage-Switching Flyback Converter. IEEE Trans. Power Electron. 1994, 9, 129–135. [Google Scholar]
- Zhang, J.; Huang, X.; Wu, X.; Qian, Z. A High Efficiency Flyback Converter with New Active Clamp Technique. IEEE Trans. Power Electron. 2010, 25, 1775–1785. [Google Scholar] [CrossRef]
- Lee, H.; Choe, H.; Ham, S.; Kang, B. High-Efficiency Asymmetric Forward-Flyback Converter for Wide Output Power Range. IEEE Trans. Power Electron. 2017, 32, 433–440. [Google Scholar] [CrossRef]
- Hakoda, Y.; Ninomiya, T.; Shoyama, M.; Hashimoto, T. Effect of Clamp Capacitor on the Stability of Active-Clamp DC-DC Converters. In Proceedings of the PESC 98 Record. 29th Annual IEEE Power Electronics Specialists Conference (Cat. No.98CH36196), Fukuoka, Japan, 22 May 1998; pp. 355–361. [Google Scholar]
- Chiu, H.J.; Lo, Y.K.; Lee, H.C.; Cheng, S.J.; Yan, Y.C.; Lin, C.Y.; Wang, T.H.; Mou, S.C. A Single-Stage Soft-Switching Flyback Converter for Power-Factor Correction Applications. IEEE Trans. Ind. Electron. 2010, 57, 2187–2190. [Google Scholar] [CrossRef]
- Xue, L.; Zhang, J. Highly Efficient Secondary-Resonant Active Clamp Flyback Converter. IEEE Trans. Ind. Electron. 2018, 65, 1235–1243. [Google Scholar] [CrossRef]
- Perrin, R.; Quentin, N.; Allard, B.; Martin, C.; Ali, M. High Temperature GaN Active-Clamp Flyback Converter with Resonant Operation Mode. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 1077–1085. [Google Scholar] [CrossRef]
- Spiazzi, G.; Mattavelli, P.; Costabeber, A. High Step-Up Ratio Flyback Converter with Active Clamp and Voltage Multiplier. IEEE Trans. Power Electron. 2011, 26, 3205–3214. [Google Scholar] [CrossRef]
- Papanikolaou, N.P.; Tatakis, E.C. Active Voltage Clamp in Flyback Converters Operating in CCM Mode Under Wide Load Variation. IEEE Trans. Ind. Electron. 2004, 51, 632–640. [Google Scholar] [CrossRef]
- Wu, T.F.; Lai, Y.S.; Hung, J.C.; Chen, Y.M. Boost Converter with Coupled Inductors and Buck-Boost Type of Active Clamp. IEEE Trans. Ind. Electron. 2008, 55, 154–162. [Google Scholar] [CrossRef]
- Lin, B.R.; Dong, J.Y. Analysis and Implementation of an Active Clamping Zero-Voltage Turn-On Switching/Zero-Current Turn-Off Switching Converter. IET Power Electron. 2010, 3, 429–437. [Google Scholar] [CrossRef]
- Kyu-Chan, L.; Hang-Seok, C.; Bo Hyung, C. Power Factor Correction Converter Using Delay Control. IEEE Trans. Power Electron. 2000, 15, 626–633. [Google Scholar] [CrossRef]
- Tse, C.K.; Chow, M.H.L. New Single-Stage Power-Factor-Corrected Regulators Operating in Discontinuous Capacitor Voltage Mode. In Proceedings of the PESC97. Record 28th Annual IEEE Power Electronics Specialists Conference. Formerly Power Conditioning Specialists Conference 1970–1971. Power Processing and Electronic Specialists Conference 1972, St. Louis, MO, USA, 27 June 1997; pp. 371–377. [Google Scholar]
- Duranay, Z.B.; Guldemir, H. Simulation of Power Factor Corrected AC-DC Boost Converter. In Proceedings of the 2019 11th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Pitesti, Romania, 27–29 June 2019; pp. 1–4. [Google Scholar]
- Korotkov, S.; Miffakhutdinov, R.; Nemchinov, A.; Fraidlin, S. Asymmetrical Half-Bridge in a Single Stage PFC AC/DC Converter. In Proceedings of the APEC 97—Applied Power Electronics Conference, Atlanta, GA, USA, 27 February 1997; pp. 484–488. [Google Scholar]
- Redl, R. An Economical Single-Phase Passive Power-Factor-Corrected Rectifier: Topology, Operation, Extensions, and Design for Compliance. In Proceedings of the APEC 98. Thirteenth Annual Applied Power Electronics Conference and Exposition, Anaheim, CA, USA, 15–19 February 1998; pp. 454–460. [Google Scholar]
- Park, J.; Roh, Y.S.; Moon, Y.J.; Yoo, C. A CCM/DCM Dual-Mode Synchronous Rectification Controller for a High-Efficiency Flyback Converter. IEEE Trans. Power Electron. 2014, 29, 768–774. [Google Scholar] [CrossRef]
- Kwon, J.M.; Kwon, B.H. High Step-Up Active-Clamp Converter with Input-Current Doubler and Output-Voltage Doubler for Fuel Cell Power Systems. IEEE Trans. on Power Electron. 2009, 24, 108–115. [Google Scholar] [CrossRef]
- Lin, B.R.; Chiang, H.K.; Chen, C.C. Analysis of a Zero-Voltage Switching Converter with Two Transformers. IEEE Trans. Circuits Syst. II 2006, 53, 1088–1092. [Google Scholar] [CrossRef]
- Lee, J.J.; Kwon, J.M.; Kim, E.H.; Kwon, B.H. Dual Series-Resonant Active-Clamp Converter. IEEE Trans. Ind. Electron. 2008, 55, 699–710. [Google Scholar] [CrossRef]
- Li, W.; Zhao, Y.; Deng, Y.; He, X. Interleaved Converter with Voltage Multiplier Cell for High Step-Up and High-Efficiency Conversion. IEEE Trans. on Power Electron. 2010, 25, 2397–2408. [Google Scholar] [CrossRef]
- Lee, Y.S.; Lin, B.T. Adding Active Clamping and Soft Switching to Boost-Flyback Single-Stage Isolated Power-Factor-Corrected Power Supplies. IEEE Trans. Power Electron. 1997, 12, 1017–1027. [Google Scholar]
- Xu, H.; Chen, D.; Xue, F.; Li, X. Optimal Design Method of Interleaved Boost PFC for Improving Efficiency from Switching Frequency, Boost Inductor and Output Voltage. IEEE Trans. Power Electron. 2019, 34, 6088–6107. [Google Scholar] [CrossRef]
- Watson, R.; Lee, F.C.; Hua, G.C. Utilization of an Active-Clamp Circuit to Achieve Soft Switching in Flyback Converters. IEEE Trans. Power Electron. 1996, 11, 162–169. [Google Scholar] [CrossRef]
- Lin, W.; Chen, H.; Fang, Y. A Single-stage PFC by integrating quasi-bridgeless boost and LLC converter. In Proceedings of the 2018 IEEE International Telecommunications Energy Conference (INTELEC), Turino, Italy, 7–11 October 2018. [Google Scholar]
- Usman, R.; Ali Faisal, M.; Hadeed, A.S.; Dario, G. Design and Analysis of a Novel High-Gain DC-DC Boost Converter with Low Component Count. Electronics 2021, 10, 1761. [Google Scholar]
- Abasian, A.; Farzanehfard, H.; Hashem, S.A. A Single-Stage Single-Switch Soft-Switching (S6) Boost-Flyback PFC Converter. IEEE Trans. Power Electron. 2019, 34, 9806–9813. [Google Scholar] [CrossRef]
- Liu, Y.M.; Chang, L.K. Single-Stage Soft-Switching AC–DC Converter with Input-Current Shaping for Universal Line Applications. IEEE Trans. Ind. Electron. 2009, 56, 467–479. [Google Scholar]
- Lee, S.W.; Do, H.L. Soft-Switching Two-Switch Resonant AC–DC Converter with High Power Factor. IEEE Trans. Ind. Electron. 2016, 63, 2083–2091. [Google Scholar] [CrossRef]
- Shen, Y.; Zhao, W.; Chen, Z.; Cai, C. Full-Bridge LLC Resonant Converter With Series-Parallel Connected Transformers for Electric Vehicle On-Board Charger. IEEE Access 2018, 6, 13490–13500. [Google Scholar] [CrossRef]
Item and No. | Proposed | Ref. [26] | Ref. [27] | Ref. [28] | Ref. [29] |
---|---|---|---|---|---|
Switch | 4 | 1 | 1 | 2 | 2 |
Inductor | 2 | 2 | 1 | 3 | 1 |
Diode | 4 | 3 | 3 | 4 | 5 |
Capacitor | 4 | 2 | 3 | 4 | 5 |
Windings | 2 | n/a | 3 | 4 | 2 |
THD | Low | n/a | Moderate | High | Moderate |
Switching loss | Moderate | Low | Low | Low | Low |
Efficiency(%) | 88.2 | 92.0 | 91.5 | 91.3 | 91.0 |
Parameters | Value |
---|---|
Input voltage Vin Output voltage Vo Output current Io | 110 V, 60 Hz 19 V 6.32 A |
Switching frequency fs | 300 kHz |
Parameters | Value |
---|---|
LPFC Lr Lm1, Lm2 | 55 μH 5.4 μH 31 μH |
Np1:Ns1 | 3.33:1 |
Np2:Ns2 | 3.33:1 |
CBus | 820 μF |
CClamp | 30 nF |
Loading Level | 25% | 50% | 75% | 100% |
---|---|---|---|---|
vin | 109.89 V | 109.92 V | 109.89 V | 109.92 V |
iin | 326.6 mA | 638.1 mA | 955.8 mA | 1.26 A |
VO | 19.05 V | 19.01 V | 19.02 V | 19.02 V |
IO | 1.58 A | 3.16 A | 4.74 A | 6.32 A |
PF | 0.977 | 0.979 | 0.978 | 0.984 |
Eff% | 85.84% | 87.48% | 87.78% | 88.20% |
Item. | Model No. | RDS(ON)/CISS | Conduction Loss (IDS,RMS2 × RDS(ON)) × 2 | Switching Loss ×(Ciss × VGS2 × f × 2) |
---|---|---|---|---|
Pri. (S1, S2) | C3M0065090D | 65 mΩ/660 pF | 0.206 W (for 2 pcs) | 0.045 W (for 2 pcs) |
Sec. (S3, S4) | BSC160N15NS | 16 mΩ/1370 pF | 1.278 W (for 2 pcs) | 0.093 W (for 2 pcs) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.-T.; Cheng, Y.-T. Design and Implementation of a Single-Stage PFC Active-Clamp Flyback Converter with Dual Transformers. Electronics 2021, 10, 2588. https://doi.org/10.3390/electronics10212588
Wu S-T, Cheng Y-T. Design and Implementation of a Single-Stage PFC Active-Clamp Flyback Converter with Dual Transformers. Electronics. 2021; 10(21):2588. https://doi.org/10.3390/electronics10212588
Chicago/Turabian StyleWu, Sen-Tung, and Yu-Ting Cheng. 2021. "Design and Implementation of a Single-Stage PFC Active-Clamp Flyback Converter with Dual Transformers" Electronics 10, no. 21: 2588. https://doi.org/10.3390/electronics10212588
APA StyleWu, S.-T., & Cheng, Y.-T. (2021). Design and Implementation of a Single-Stage PFC Active-Clamp Flyback Converter with Dual Transformers. Electronics, 10(21), 2588. https://doi.org/10.3390/electronics10212588