Improvement of Identity Recognition with Occlusion Detection-Based Feature Selection
Abstract
:1. Introduction
2. Related Work
3. Experiments and Results
3.1. Influence on Occlusion
3.2. Identity Recognition Using Partially Obscured Images
3.3. Proposed Method and Result
3.3.1. Mask Detection with Recycled Identity Features
3.3.2. Feature Selection with Mask Detection
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- GIRSHICK, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 11–18 December 2015; pp. 1440–1448. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 21–37. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Zhang, J.; Wu, X.; Hoi, S.C.; Zhu, J. Feature agglomeration networks for single stage face detection. Neurocomputing 2020, 380, 180–189. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Shen, W.; Qiao, S.; Wang, Y.; Wang, B.; Yuille, A. Robust face detection via learning small faces on hard images. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Snowmass Village, CO, USA, 1–5 March 2020; pp. 1361–1370. [Google Scholar]
- Zhang, K.; Zhang, Z.; Li, Z.; Qiao, Y. Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 2016, 23, 1499–1503. [Google Scholar] [CrossRef] [Green Version]
- Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10781–10790. [Google Scholar]
- Qian, S.; Sun, K.; Wu, W.; Qian, C.; Jia, J. Aggregation via separation: Boosting facial landmark detector with semi-supervised style translation. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 10153–10163. [Google Scholar]
- Wang, X.; Bo, L.; Fuxin, L. Adaptive wing loss for robust face alignment via heatmap regression. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 6971–6981. [Google Scholar]
- Sun, Y.; Wang, X.; Tang, X. Deep convolutional network cascade for facial point detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 3476–3483. [Google Scholar]
- Zhou, E.; Fan, H.; Cao, Z.; Jiang, Y.; Yin, Q. Extensive facial landmark localization with coarse-to-fine convolutional network cascade. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Sydney, Australia, 2–8 December 2013; pp. 386–391. [Google Scholar]
- Paulsen, R.R.; Juhl, K.A.; Haspang, T.M.; Hansen, T.; Ganz, M.; Einarsson, G. Multi-view consensus CNN for 3D facial landmark placement. In Asian Conference on Computer Vision; Springer: Cham, Germany, 2018; pp. 706–719. [Google Scholar]
- Zhu, X.; Lei, Z.; Liu, X.; Shi, H.; Li, S.Z. Face alignment across large poses: A 3d solution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 146–155. [Google Scholar]
- Wang, Y.; Solomon, J.M. PRNet: Self-supervised learning for partial-to-partial registration. In Proceedings of the Advances Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; pp. 8814–8826. [Google Scholar]
- Jourabloo, A.; Liu, X. Large-pose face alignment via CNN-based dense 3D model fitting. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4188–4196. [Google Scholar]
- Wang, K.; Zhao, X.; Gao, W.; Zou, J. A coarse-to-fine approach for 3D facial landmarking by using deep feature fusion. Symmetry 2018, 10, 308. [Google Scholar] [CrossRef] [Green Version]
- Ahonen, T.; Hadid, A.; Pietikäinen, M. Face recognition with local binary patterns. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 5–12 September 2004; pp. 469–481. [Google Scholar]
- Rodriguez, Y.; Marcel, S. Face authentication using adapted local binary pattern histograms. In Proceedings of the European Conference on Computer Vision, Graz, Austria, 7–13 May 2006; pp. 321–332. [Google Scholar]
- Déniz, O.; Bueno, G.; Salido, J.; De la Torre, F. Face recognition using histograms of oriented gradients. Pattern Recognit. Lett. 2011, 32, 1598–1603. [Google Scholar] [CrossRef]
- Barbu, T. Gabor filter-based face recognition technique. Rom. Acad. 2010, 11, 277–283. [Google Scholar]
- Taigman, Y.; Yang, M.; Ranzato, M.A.; Wolf, L. Deepface: Closing the gap to human-level performance in face verification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1701–1708. [Google Scholar]
- Sun, Y.; Wang, X.; Tang, X. Deep learning face representation from predicting 10,000 classes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1891–1898. [Google Scholar]
- Parkhi, O.M.; Vedaldi, A.; Zisserman, A. Deep Face Recognition. 2015. Available online: https://www.robots.ox.ac.uk/~vgg/publications/2015/Parkhi15/parkhi15.pdf (accessed on 9 December 2020).
- Schroff, F.; Kalenichenko, D.; Philbin, J. Facenet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 815–823. [Google Scholar]
- Liu, W.; Wen, Y.; Yu, Z.; Li, M.; Raj, B.; Song, L. Sphereface: Deep hypersphere embedding for face recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 June 2017; pp. 212–220. [Google Scholar]
- Wang, H.; Wang, Y.; Zhou, Z.; Ji, X.; Gong, D.; Zhou, J.; Liu, W. Cosface: Large margin cosine loss for deep face recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 5265–5274. [Google Scholar]
- Deng, J.; Guo, J.; Xue, N.; Zafeiriou, S. Arcface: Additive angular margin loss for deep face recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 4690–4699. [Google Scholar]
- Wen, Y.; Zhang, K.; Li, Z.; Qiao, Y. A discriminative feature learning approach for deep face recognition. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 499–515. [Google Scholar]
- Morales, A.; Fierrez, J.; Vera-Rodriguez, R. SensitiveNets: Learning agnostic representations with application to face recognition. arXiv 2019, arXiv:1902.00334. [Google Scholar]
- Zhao, J.; Li, J.; Tu, X.; Zhao, F.; Xin, Y.; Xing, J.; Feng, J. Multi-prototype networks for unconstrained set-based face recognition. arXiv 2019, arXiv:1902.04755. [Google Scholar]
- Pearline, S.A. Face Recognition under Varying Blur, Illumination and Expression in an Unconstrained Environment. arXiv 2019, arXiv:1902.10885. [Google Scholar]
- Ming, Z.; Xia, J.; Luqman, M.M.; Burie, J.C.; Zhao, K. Dynamic Multi-Task Learning for Face Recognition with Facial Expression. arXiv 2019, arXiv:1911.03281. [Google Scholar]
- Lu, B.; Chen, J.C.; Castillo, C.D.; Chellappa, R. An experimental evaluation of covariates effects on unconstrained face verification. IEEE Trans. Biom. Behav. Identity Sci. 2019, 1, 42–55. [Google Scholar] [CrossRef] [Green Version]
- Mao, L.; Sheng, F.; Zhang, T. Face Occlusion Recognition with Deep Learning in Security Framework for the IoT. IEEE Access 2019, 7, 174531–174540. [Google Scholar] [CrossRef]
- Yu, G.; Zhang, Z. Face and occlusion Recognition Algorithm based on Global and Local. J. Phys. Conf. Ser. 2020, 1453, 012019. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Wei, S.; Jiang, X.; Ruan, T.; Zhao, Y. Face Verification between ID Document Photos and Partial Occluded Spot Photos. In Proceedings of the International Conference on Image and Graphics, Beijing, China, 23–25 August 2019; pp. 94–105. [Google Scholar]
- Duan, Q.; Zhang, L. BoostGAN for Occlusive Profile Face Frontalization and Recognition. arXiv 2019, arXiv:1902.09782. [Google Scholar]
- Huang, G.B.; Mattar, M.; Berg, T.; Learned-Miller, E. Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments; Technical Report; University of Massachusetts: Amherst, MA, USA, 2007; pp. 7–49. [Google Scholar]
- Wu, X.; He, R.; Sun, Z.; Tan, T. A light cnn for deep face representation with noisy labels. IEEE Trans. Inf. Forensics Secur. 2018, 13, 2884–2896. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.; Jeon, S.H.; Kim, J.; Yoon, H. Robust deep age estimation method using artificially generated image set. ETRI J. 2017, 39, 643–651. [Google Scholar] [CrossRef]
- Ngan, M.L.; Grother, P.J.; Hanaoka, K.K. Ongoing Face Recognition Vendor Test (FRVT) Part 6A: Face Recognition Accuracy with Masks Using pre-COVID-19 Algorithms. NIST Interagency/Internal Report (NISTIR)–8311. 2020. Available online: https://www.nist.gov/publications/ongoing-face-recognition-vendor-test-frvt-part-6a-face-recognition-accuracy-masks-using (accessed on 9 December 2020).
- Gross, R.; Matthews, I.; Cohn, J.; Kanade, T.; Baker, S. Multi-pie. Image Vis. Comput. 2010, 28, 807–813. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Liu, Y.; Gao, X.; Han, Z. Mobilefacenets: Efficient cnns for accurate real-time face verification on mobile devices. In Chinese Conference on Biometric Recognition; Springer: Berlin/Heidelberg, Germany, 2018; pp. 428–438. [Google Scholar]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, inception-resnet and the impact of residual connections on learning. AAAI Conf. Artif. Intell. 2017, 31, 1. [Google Scholar]
Recognizer | Method | NIST Mask 0 | NIST Mask 1 | NIST Mask 2 | NIST Mask 3 | NIST Mask 4 | w/o Mask |
---|---|---|---|---|---|---|---|
MobileFace | +mask | 88.91 | 90.89 | 96.75 | 90.79 | 95.33 | 99.18 |
+mask +add-on | 95.34 | 96.89 | 96.86 | 94.99 | 97.06 | ||
Inception Resnet-V1 | +mask | 87.17 | 89.69 | 96.78 | 87.24 | 91.10 | 99.05 |
+mask +add-on | 95.15 | 96.59 | 96.92 | 94.32 | 96.90 | ||
Ours | +mask | 93.43 | 94.25 | 97.48 | 94.85 | 96.55 | 99.58 |
+mask +add-on | 96.53 | 97.23 | 97.90 | 96.77 | 97.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, J.; Yoon, H.-S.; Kim, J. Improvement of Identity Recognition with Occlusion Detection-Based Feature Selection. Electronics 2021, 10, 167. https://doi.org/10.3390/electronics10020167
Jang J, Yoon H-S, Kim J. Improvement of Identity Recognition with Occlusion Detection-Based Feature Selection. Electronics. 2021; 10(2):167. https://doi.org/10.3390/electronics10020167
Chicago/Turabian StyleJang, Jaeyoon, Ho-Sub Yoon, and Jaehong Kim. 2021. "Improvement of Identity Recognition with Occlusion Detection-Based Feature Selection" Electronics 10, no. 2: 167. https://doi.org/10.3390/electronics10020167
APA StyleJang, J., Yoon, H.-S., & Kim, J. (2021). Improvement of Identity Recognition with Occlusion Detection-Based Feature Selection. Electronics, 10(2), 167. https://doi.org/10.3390/electronics10020167