Stabilization of the J-V Characteristic of a Perovskite Solar Cell Using an Intelligent Control Loop
Abstract
1. Introduction
2. Materials and Methods
2.1. Device Fabrication and Characterization
2.2. The Control Method
3. Results and Discussion
3.1. Experiment Set 1: J-V Control in Dark
3.2. Experiment Set 2: J-V Control under Illumination
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baig, H.; Kanda, H.; Asiri, A.M.; Nazeeruddin, M.K.; Mallick, T. Increasing efficiency of perovskite solar cells using low con-centrating photovoltaic systems. Sustain. Energy Fuels 2020, 4, 528–537. [Google Scholar] [CrossRef]
- Yao, J.; Wang, H.; Wang, P.; Gurney, R.S.; Intaniwet, A.; Ruankham, P.; Choopun, S.; Liu, D.; Wang, T. Trap passivation and efficiency improvement of perovskite solar cells by a guanidinium additive. Mater. Chem. Front. 2019, 3, 1357–1364. [Google Scholar] [CrossRef]
- Photovoltaic Research—Best Research-Cell Efficiency Chart. Available online: http://www.nrel.gov/pv/cell-efficiency.html (accessed on 6 June 2020).
- Oxford, P.V. Perovskite Solar Cell Achieves 28% Efficiency. Available online: https://www.oxfordpv.com/news/oxford-pv-perovskite-solar-cell-achieves-28-efficiency (accessed on 16 November 2020).
- Zhao, X.; Park, N.-G. Stability Issues on Perovskite Solar Cells. Photonics 2015, 2, 1139–1151. [Google Scholar] [CrossRef]
- Asghar, M.I.; Zhang, J.; Wang, H.; Lund, P.D. Device stability of perovskite solar cells—A review. Renew. Sustain. Energy Rev. 2017, 77, 131–146. [Google Scholar] [CrossRef]
- Ibn-Mohammed, T.; Koh, S.; Reaney, I.; Acquaye, A.; Schileo, G.; Mustapha, K.; Greenough, R. Perovskite solar cells: An inte-grated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies. Renew. Sust. Energy Rev. 2017, 80, 1321–1344. [Google Scholar] [CrossRef]
- Domanski, K.; Alharbi, E.A.; Hagfeldt, A.; Grätzel, M.; Tress, W. Systematic investigation of the impact of operation conditions on the degra-dation behaviour of perovskite solar cells. Nat. Energy 2018, 3, 61–67. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, T.; Barbaud, J.; Kong, W.; Cui, D.; Chen, H.; Yang, X.; Han, L. Stabilizing heterostructures of soft perovskite semiconductors. Science 2019, 365, 687–691. [Google Scholar] [CrossRef]
- Khenkin, M.V.; Di Giacomo, F.; Galagan, Y.; Rahmany, S.; Etgar, L.; Katz, E.A.; Visoly-Fisher, I. Bias-Dependent Stability of Perovskite Solar Cells Studied Using Natural and Concentrated Sunlight. Sol. RRL 2020, 4, 1900335. [Google Scholar]
- Ahn, N.; Kwak, K.; Jang, M.S.; Yoon, H.; Lee, B.Y.; Lee, J.-K.; Pikhitsa, P.V.; Byun, J.; Choi, M. Trapped charge-driven degradation of perovskite solar cells. Nat. Commun. 2016, 7, 13422. [Google Scholar] [CrossRef]
- Kwak, K.; Lim, E.; Ahn, N.; Heo, J.; Bang, K.; Kim, S.K.; Choi, M. An atomistic mechanism for the degradation of perovskite solar cells by trapped charge. Nanoscale 2019, 11, 11369–11378. [Google Scholar] [CrossRef]
- Mahesh, S.; Ball, J.M.; Oliver, R.D.J.; McMeekin, D.P.; Nayak, P.K.; Johnston, M.B.; Snaith, H.J. Revealing the origin of voltage loss in mixed-halide perovskite solar cells. Energy Environ. Sci. 2020, 13, 258–267. [Google Scholar] [CrossRef]
- Jin, H.; Debroye, E.; Keshavarz, M.; Scheblykin, I.G.; Roeffaers, M.B.J.; Hofkens, J.; Steele, J.A. It’s a trap! on the nature of local-ised states and charge trapping in lead halide perovskites. Mater. Horiz. 2020, 7, 397–410. [Google Scholar] [CrossRef]
- Azpiroz, J.M.; Mosconi, E.; Bisquert, J.; De Angelis, F. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 2015, 8, 2118–2127. [Google Scholar] [CrossRef]
- Chen, S.; Wen, X.; Sheng, R.; Huang, S.; Deng, X.; Green, M.; Ho-Baillie, A. Mobile ion induced slow carrier dynamics in organ-ic–inorganic perovskite CH3 NH3 PbBr3. ACS Appl. Mater. Interfaces 2016, 8, 5351–5357. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.A.A.; Sayyad, M.H.; Khan, K.; Guo, K.; Shen, F.; Sun, J.; Tareen, A.K.; Gong, Y.; Guo, Z. Progress towards High-Efficiency and Stable Tin-Based Perovskite Solar Cells. Energies 2020, 13, 5092. [Google Scholar] [CrossRef]
- Domínguez-Pumar, M.; Bheesayagari, C.R.; Gorreta, S.; Lopez-Rodriguez, G.; Martin, I.; Blokhina, E.; Pons-Nin, J.; López, G. Charge Trapping Control in MOS Capacitors. IEEE Trans. Ind. Electron. 2016, 64, 3023–3029. [Google Scholar] [CrossRef]
- Wojciechowski, K.; Saliba, M.; Leijtens, T.; Abate, A.; Snaith, H.J. Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency. Energy Environ. Sci. 2014, 7, 1142–1147. [Google Scholar] [CrossRef]
- Martinez-Denegri, G.; Colodrero, S.; Kramarenko, M.; Martorell, J. All-Nanoparticle SnO2/TiO2 Electron-Transporting Layers Processed at Low Temperature for Efficient Thin-Film Perovskite Solar Cells. ACS Appl. Energy Mater. 2018, 1, 5548–5556. [Google Scholar] [CrossRef]
- Yang, W.S.; Park, B.-W.; Jung, E.H.; Jeon, N.J.; Kim, Y.C.; Lee, D.U.; Shin, S.S.; Seo, J.; Kim, E.K.; Noh, J.H.; et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 2017, 356, 1376–1379. [Google Scholar] [CrossRef]
- Pockett, A.; Eperon, G.E.; Sakai, N.; Snaith, H.J.; Peter, L.M.; Cameron, P.J. Microseconds, milliseconds and seconds: Deconvoluting the dynamic behaviour of planar perovskite solar cells. Phys. Chem. Chem. Phys. 2017, 19, 5959–5970. [Google Scholar] [CrossRef]
- Tress, W.; Marinova, N.; Moehl, T.; Zakeeruddin, S.M.; Nazeeruddin, M.K.; Gratzel, M. Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: The role of a compensated electric field. Energy Environ. Sci. 2015, 8, 995–1004. [Google Scholar] [CrossRef]
- Nemnes, G.A.; Besleaga, C.; Tomulescu, A.G.; Palici, A.; Pintilie, L.; Manolescu, A.; Pintilie, I. How measurement protocols in-fluence the dynamic J-V characteristics of perovskite solar cells. Solar Energy 2018, 173, 976–983. [Google Scholar] [CrossRef]
- Mahapatra, A.; Parikh, N.; Kumar, P.; Kumar, M.; Prochowicz, D.; Kalam, A.; Tavakoli, M.M.; Yadav, P. Changes in the Elec-trical Characteristics of Perovskite Solar Cells with Aging Time. Molecules 2020, 25, 2299. [Google Scholar] [CrossRef] [PubMed]
- Sherkar, T.S.; Momblona, C.; Gil-Escrig, L.; Ávila, J.; Sessolo, M.; Bolink, H.J.; Koster, L.J.A. Recombination in Perovskite Solar Cells: Significance of Grain Boundaries, Interface Traps, and Defect Ions. ACS Energy Lett. 2017, 2, 1214–1222. [Google Scholar] [CrossRef]
- Almora, O.; Aranda, C.; Zarazua, I.; Guerrero, A.; Garcia-Belmonte, G. Non capacitive hysteresis in perovskite solar cells at room temperature. ACS Energy Lett. 2016, 1, 209–215. [Google Scholar] [CrossRef]
- Almora, O.; Cho, K.T.; Aghazada, S.; Zimmermann, I.; Matt, G.J.; Brabec, C.J.; Nazeeruddin, M.K.; Garcia-Belmonte, G. Dis-cerning recombination mechanisms and ideality factors through impedance analysis of high-efficiency perovskite solar cells. Nano Energy 2018, 48, 63–72. [Google Scholar] [CrossRef]
- Torres, C.I.; Marcus, A.K.; Parameswaran, P.; Rittmann, B.E. Kinetic Experiments for Evaluating the Nernst−Monod Model for Anode-Respiring Bacteria (ARB) in a Biofilm Anode. Environ. Sci. Technol. 2008, 42, 6593–6597. [Google Scholar] [CrossRef]
- Garcia-Belmonte, G.; Bisquert, J. Distinction between capacitive and non-capacitive hysteretic currents in operation and degradation of perovskite solar cells. ACS Energy Lett. 2016, 1, 683–688. [Google Scholar] [CrossRef]
- Calado, P.; Burkitt, D.; Yao, J.; Troughton, J.; Watson, T.M.; Carnie, M.J.; Telford, A.M.; O’Regan, B.C.; Nelson, J.; Barnes, P.R. Identifying dominant recombination mechanisms in perovskite solar cells by measuring the transient ideality factor. Phys. Rev. Appl. 2019, 11, 044005. [Google Scholar] [CrossRef]
- Norsworthy, S.; Schreier, R.; Temes, G. Delta-Sigma Data Converters: Theory, Design, and Simulation; IEEE Press: New York, NY, USA, 1997. [Google Scholar]
- Aziz, P.M.; Sorensen, H.V.; Der Spiegel, J.V. An overview of sigma-delta converters. IEEE Signal Process. Mag. 1996, 13, 61–84. [Google Scholar] [CrossRef]
- Gorreta, S.; Pons-Nin, J.; Blokhina, E.; Feely, O.; Dominguez-Pumar, M. Delta-Sigma Control of Dielectric Charge for Contact-less Capacitive MEMS. IEEE J. Microelectromech. Syst. 2014, 23, 829–841. [Google Scholar] [CrossRef]
- Gorreta, S.; Pons-Nin, J.; Blokhina, E.; Dominguez, M.; Domínguez-Pumar, M. A Second-Order Delta-Sigma Control of Dielectric Charge for Contactless Capacitive MEMS. J. Microelectromech. Syst. 2015, 24, 259–261. [Google Scholar] [CrossRef]
- Correa-Baena, J.-P.; Anaya, M.; Lozano, G.; Tress, W.; Domanski, K.; Saliba, M.; Matsui, T.; Jacobsson, T.J.; Calvo, M.E.; Abate, A.; et al. Unbroken Perovskite: Interplay of Morphology, Electro-optical Properties, and Ionic Movement. Adv. Mater. 2016, 28, 5031–5037. [Google Scholar] [CrossRef] [PubMed]
Dark, Forward | Dark, Reverse | Light, Forward | Light, Reverse | |
---|---|---|---|---|
n | 2 | 2 | 4.2 | 1.6 |
J0 [pA/cm2] | 2 | 1.67 | 1.67 | 2.5 |
RS [Ω] | 73 | 170 | 80 | 112 |
Rsh [MΩ] | 1 | 2 | 0.01 | 0.04 |
C [µF/cm2] | 7.6 | 7.6 | 380 | 380 |
Jph [mA/cm2] | 0.057 | 0.057 | 22 | 22 |
Jmax [mA/cm2] | 0.067 | 83 | 83 | 1.7 × 10−9 |
VA [V] | 0.8 | 1.2 | 1.02 | 1.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bheesayagari, C.R.; Martínez-Denegri, G.; Orpella, A.; Pons-Nin, J.; Bermejo, S.; Alcubilla, R.; Martorell, J.; Domínguez-Pumar, M. Stabilization of the J-V Characteristic of a Perovskite Solar Cell Using an Intelligent Control Loop. Electronics 2021, 10, 121. https://doi.org/10.3390/electronics10020121
Bheesayagari CR, Martínez-Denegri G, Orpella A, Pons-Nin J, Bermejo S, Alcubilla R, Martorell J, Domínguez-Pumar M. Stabilization of the J-V Characteristic of a Perovskite Solar Cell Using an Intelligent Control Loop. Electronics. 2021; 10(2):121. https://doi.org/10.3390/electronics10020121
Chicago/Turabian StyleBheesayagari, Chenna Reddy, Guillermo Martínez-Denegri, Albert Orpella, Joan Pons-Nin, Sandra Bermejo, Ramon Alcubilla, Jordi Martorell, and Manuel Domínguez-Pumar. 2021. "Stabilization of the J-V Characteristic of a Perovskite Solar Cell Using an Intelligent Control Loop" Electronics 10, no. 2: 121. https://doi.org/10.3390/electronics10020121
APA StyleBheesayagari, C. R., Martínez-Denegri, G., Orpella, A., Pons-Nin, J., Bermejo, S., Alcubilla, R., Martorell, J., & Domínguez-Pumar, M. (2021). Stabilization of the J-V Characteristic of a Perovskite Solar Cell Using an Intelligent Control Loop. Electronics, 10(2), 121. https://doi.org/10.3390/electronics10020121