UGCPW Structure-Based Embedded Resonator with High Quality Factor for Microwave Substrate Characterization
Abstract
:1. Introduction
2. The Proposed Resonator Method with Theoretical Analysis
2.1. The Calculation of Substrate Dielectric Constant
2.2. The Calculation of Substrate Dielectric Loss Tangent
3. Experimental Results and Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
complex relative permittivity | |
substrate dielectric constant, or substrate relative permittivity | |
effective dielectric constant of UGCPW-based structure | |
estimated dielectric constant | |
estimated effective dielectric constant of UGCPW-based structure | |
substrate dielectric loss tangent, or substrate dissipation factor | |
effective length of resonant stub | |
actual physical length of resonant stub | |
extra length due to open-end fringing effect | |
guided wavelength | |
dielectric wavelength | |
order of the resonance (odd integer, ) | |
velocity of light in free space | |
resonant frequency | |
widths of feeding signal line | |
widths of resonator stub line | |
substrate thickness | |
gap between the feeding line and ground plane of UGCPW structure | |
filling factor | |
distributed series resistance of centre strip conductor in ohms per unit length | |
distributed series resistance of ground planes in ohms per unit length | |
characteristic impedance | |
−3 dB bandwidth of resonance peak | |
insertion loss at the resonant frequency | |
loaded quality factor | |
unloaded quality factor | |
conductor quality factor | |
radiation quality factor | |
dielectric quality factor | |
conductor loss | |
radiation loss | |
radiation form factor |
References
- Wang, W.; Chen, Y.; Yang, S.; Cao, Q.; Li, H.; Zheng, X.; Wang, Y. Wireless inter/intra-chip communication using an innovative PCB channel bounded by a metamaterial absorber. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1634–1637. [Google Scholar] [CrossRef]
- Rautio, J.C.; Carlson, R.L.; Rautio, B.J.; Arvas, S. Shielded dual-mode microstrip resonator measurement of uniaxial anisotropy. IEEE Trans. Microw. Theory Tech. 2011, 59, 748–754. [Google Scholar] [CrossRef]
- Takach, A.A.; Moukanda, F.M.; Ndagijimana, F.; Al-Husseini, M.; Jomaah, J. Two-Line Technique for Dielectric Material Characterization with Application in 3D-Printing Filament Electrical Parameters Extraction. Prog. Electromagn. Res. 2019, 85, 195–207. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.-F.; Ong, C.K.; Neo, C.P.; Varadan, V.V.; Varadan, V.K. Microwave Electronics: Measurement and Materials Characterization; John Wiley & Sons: Hoboken, NJ, USA, 2004; ISBN 0470020458. [Google Scholar]
- Cai, L.; Jiang, Z.H.; Huang, Y.; Hong, W. Ungrounded Coplanar Waveguide Based Straight Line Methods for Broadband and Continuous Dielectric Characterization of Microwave Substrates. IEEE Access 2020, 8, 32624–32631. [Google Scholar] [CrossRef]
- Zelenchuk, D.E.; Fusco, V.; Goussetis, G.; Mendez, A.; Linton, D. Millimeter-wave printed circuit board characterization using substrate integrated waveguide resonators. IEEE Trans. Microw. Theory Tech. 2012, 60, 3300–3308. [Google Scholar] [CrossRef]
- Zhu, X.-C.; Hong, W.; Zhang, P.-P.; Hao, Z.-C.; Tang, H.-J.; Gong, K.; Chen, J.-X.; Wu, K. Extraction of dielectric and rough conductor loss of printed circuit board using differential method at microwave frequencies. IEEE Trans. Microw. Theory Tech. 2014, 63, 494–503. [Google Scholar] [CrossRef]
- Latti, K.P.; Kettunen, M.; Strom, J.P.; Silventoinen, P. A Review of Microstrip T-Resonator Method in Determining the Dielectric Properties of Printed Circuit Board Materials. Instrum. Meas. IEEE Trans. 2007, 56, 1845–1850. [Google Scholar] [CrossRef]
- Wang, H.B.; Cheng, Y.J. Frequency selective surface with miniaturized elements based on quarter-mode substrate integrated waveguide cavity with two poles. IEEE Trans. Antennas Propag. 2015, 64, 914–922. [Google Scholar] [CrossRef]
- Cheng, Y.M.; Chen, P.; Hong, W.; Djerafi, T.; Wu, K. Substrate-integrated-waveguide beamforming networks and multibeam antenna arrays for low-cost satellite and mobile systems. IEEE Antennas Propag. Mag. 2011, 53, 18–30. [Google Scholar] [CrossRef]
- Cheng, Y.J.; Xu, H.; Ma, D.; Wu, J.; Wang, L.; Fan, Y. Millimeter-wave shaped-beam substrate integrated conformal array antenna. IEEE Trans. Antennas Propag. 2013, 61, 4558–4566. [Google Scholar] [CrossRef]
- Saeed, K.; Pollard, R.D.; Hunter, I.C. Substrate integrated waveguide cavity resonators for complex permittivity characterization of materials. IEEE Trans. Microw. Theory Tech. 2008, 56, 2340–2347. [Google Scholar] [CrossRef]
- Wang, H.B.; Cheng, Y.J. Broadband printed-circuit-board characterization using multimode substrate-integrated-waveguide resonator. IEEE Trans. Microw. Theory Tech. 2017, 65, 2145–2152. [Google Scholar] [CrossRef]
- Ghalichechian, N.; Sertel, K. Permittivity and Loss Characterization of SU-8 Films for mmW and Terahertz Applications. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 723–726. [Google Scholar] [CrossRef]
- Seckin, S.; Nahar, N.K.; Kubilay, S. Permittivity and Loss Characterization of SUEX Epoxy Films for mmW and THz Applications. IEEE Trans. Terahertz Sci. Technol. 2018, 8, 397–402. [Google Scholar]
- Cai, L.; Jiang, Z.; Hong, W. Low-loss Substrate Material for Millimeter-wave and THz Applications. In Proceedings of the 2019 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Nanjing, China, 28–30 August 2019; pp. 1–3. [Google Scholar]
- Kumar, R.; Kumar, P.; Gupta, N.; Dubey, R. Experimental investigations of wearable antenna on flexible perforated plastic substrate. Microw. Opt. Technol. Lett. 2017, 59, 265–270. [Google Scholar] [CrossRef]
- Declercq, F.; Rogier, H.; Hertleer, C. Permittivity and Loss Tangent Characterization for Garment Antennas Based on a New Matrix-Pencil Two-Line Method. IEEE Trans. Antennas Propag. 2008, 56, 2548–2554. [Google Scholar] [CrossRef]
- Carroll, J.; Li, M.; Chang, K. New technique to measure transmission line attenuation. IEEE Trans. Microw. Theory Tech. 1995, 43, 219–222. [Google Scholar] [CrossRef]
- Heinola, J.M.; Latti, K.P.; Strom, J.P.; Kettunen, M.; Silventoinen, P. A strip line ring resonator method for determination of dielectric properties of printed circuit board material in function of frequency. In Proceedings of the 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS), Boulder, CO, USA, 20 October 2004; pp. 692–695. [Google Scholar]
- Heinola, J.-M.; Latti, K.-P.; Silventoinen, P.; Strom, J.-P.; Kettunen, M. A new method to measure dielectric constant and dissipation factor of printed circuit board laminate material in function of temperature and frequency. In Proceedings of the 9th International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces (IEEE Cat. No. 04TH8742) 2004 Proceedings, Atlanta, GA, USA, 24–26 March 2004; pp. 235–240. [Google Scholar]
- Cai, L.; Chu, D. Highly anisotropic LC material with low dielectric loss for the application of tunable notch filters. J. Electromagn. Waves Appl. 2019, 33, 1070–1081. [Google Scholar] [CrossRef] [Green Version]
- Kirschning, M.; Jansen, R.H.; Koster, N.H.L. Accurate model for open end effect of microstrip lines. Electron. Lett. 1981, 17, 123–125. [Google Scholar] [CrossRef]
- Collin, R.E. Foundations for Microwave Engineering; John Willey & Sons Inc.: New York, NY, USA, 2001. [Google Scholar]
- Yang, R.Y.; Su, Y.K.; Weng, M.H.; Hung, C.Y.; Wu, H.W. Characteristics of coplanar waveguide on lithium niobate crystals as a microwave substrate. J. Appl. Phys. 2007, 101, 173–727. [Google Scholar] [CrossRef]
- Belohoubek, E.; Denlinger, E. Loss Considerations for Microstrip Resonators (Short Papers). IEEE Trans. Microw. Theory Tech. 1975, 23, 522–526. [Google Scholar] [CrossRef]
- Denlinger, E.J. Losses of Microstrip Lines. IEEE Trans Microw. Theory Tech. 1980, 28, 513–522. [Google Scholar] [CrossRef]
- Schnieder, F.; Tischler, T.; Heinrich, W. Modeling dispersion and radiation characteristics of conductor-backed CPW with finite ground width. IEEE Trans. Microw. Theory Tech. 2003, 51, 137–143. [Google Scholar] [CrossRef]
- Shoaib, N.; Sellone, M.; Brunetti, L.; Oberto, L. Uncertainty analysis for material measurements using the vector network analyzer. Microw. Opt. Technol. Lett. 2016, 58, 1841–1844. [Google Scholar] [CrossRef]
- Gopinath, A. Losses in Coplanar Waveguides. Microw. Theory Tech. IEEE Trans. 1982, 30, 1101–1104. [Google Scholar] [CrossRef]
Samples | Order 1 | Order 3 | Order 5 | Order 7 | ||||
---|---|---|---|---|---|---|---|---|
Fre | IL | Fre | IL | Fre | IL | Fre | IL | |
Sample 1 | 2.301 | −19.84 | 6.903 | −11.99 | 11.504 | −9.68 | 16.071 | −7.46 |
Sample 2 | 2.298 | −19.53 | 6.906 | −11.83 | 11.509 | −9.95 | 16.078 | −7.51 |
Sample 3 | 2.301 | −19.80 | 6.909 | −12.20 | 11.515 | −9.94 | 16.085 | −7.74 |
Sample 4 | 2.299 | −19.67 | 6.904 | −12.07 | 11.507 | −9.71 | 16.075 | −7.63 |
Simulation | 2.321 | −19.53 | 6.969 | −12.30 | 11.61 | −9.89 | 16.22 | −7.50 |
Work | Tech. | Fre. (GHz) | Proc. | |||
---|---|---|---|---|---|---|
[13] | ML ring | ~2.15/0.0012~0.0014 | ~0.05/~0.0003–0.0005 | ~135 | −27–40 | Medial |
[19] | NA | NA | ~100–188 | −3 | Medial | |
[19] | T | NA | NA | ~184–196 | 3 | Medial |
[8] | ML ring | 4.21/0.0192 | 0.04/0.008 | NA | 0.5–10 | Medial |
[8] | ML T | 4.28/0.0198 | 0.03/0.002 | NA | 0.5–10 | Medial |
[13] | SIW cavity | 2.195/0.00145 | NA | ~550 | 92 | Hard |
[30] | NA | NA | ~170 | 4–10 | Easy | |
This Work | 2.218/0.0009286 | 0.018/0.0000286 | 211.3 | 2.3 | Easy |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, L. UGCPW Structure-Based Embedded Resonator with High Quality Factor for Microwave Substrate Characterization. Electronics 2021, 10, 113. https://doi.org/10.3390/electronics10020113
Cai L. UGCPW Structure-Based Embedded Resonator with High Quality Factor for Microwave Substrate Characterization. Electronics. 2021; 10(2):113. https://doi.org/10.3390/electronics10020113
Chicago/Turabian StyleCai, Longzhu. 2021. "UGCPW Structure-Based Embedded Resonator with High Quality Factor for Microwave Substrate Characterization" Electronics 10, no. 2: 113. https://doi.org/10.3390/electronics10020113
APA StyleCai, L. (2021). UGCPW Structure-Based Embedded Resonator with High Quality Factor for Microwave Substrate Characterization. Electronics, 10(2), 113. https://doi.org/10.3390/electronics10020113