S Band Hybrid Power Amplifier in GaN Technology with Input/Output Multi Harmonic Tuned Terminations
Abstract
:1. Introduction
2. Power Amplifier Design
2.1. Active Device Technology
2.2. Bandwidth, Biasing and Stability Network
2.3. Input & Output Matching Network
3. Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
EM | Electromagnetic |
PA | Power Amplifier |
GaN | Gallium Nitride |
IMN | Input Matching Network |
OMN | Output Matching Network |
References
- Raab, F.; Asbeck, P.; Cripps, S.; Kenington, P.; Popovic, Z.; Pothecary, N.; Sevic, J.; Sokal, N. Power amplifiers and transmitters for RF and microwave. IEEE Trans. Microw. Theory Tech. 2002, 50, 814–826. [Google Scholar] [CrossRef] [Green Version]
- Prejs, A.; Wood, S.; Pengelly, R.; Pribble, W. Thermal analysis and its application to high power GaN HEMT amplifiers. In Proceedings of the 2009 IEEE MTT-S International Microwave Symposium Digest, Boston, MA, USA, 7–12 June 2009; pp. 917–920. [Google Scholar] [CrossRef]
- Colantonio, P.; Limiti, E.; Giannini, F. High Efficiency RF and Microwave Solid State Power Amplifiers; Wiley Series in Microwave and Optical Engineering; Wiley: Chichester, UK, 2009. [Google Scholar]
- Raab, F. Maximum efficiency and output of class-F power amplifiers. IEEE Trans. Microw. Theory Tech. 2001, 49, 1162–1166. [Google Scholar] [CrossRef]
- Colantonio, P.; Giannini, F.; Leuzzi, G.; Limiti, E. On the class-F power amplifier design. Int. J. Microw.-Comput.-Aided Eng. 1999, 9, 129–149. [Google Scholar] [CrossRef]
- Raab, F. Class-F power amplifiers with maximally flat waveforms. IEEE Trans. Microw. Theory Tech. 1997, 45, 2007–2012. [Google Scholar] [CrossRef]
- Raffo, A.; Vadalà, V.; Bosi, G.; Trevisan, F.; Avolio, G.; Vannini, G. Waveform engineering: State-of-the-art and future trends (invited paper). Int. J. Microw.-Comput.-Aided Eng. 2017, 27, e21051. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Li, S.; Cheng, Z.; Feng, H.; Dong, Z. High-efficiency broadband GaN HEMT power amplifier based on harmonic-tuned matching approach. Int. J. Microw.-Comput.-Aided Eng. 2020, 30, e22097. [Google Scholar] [CrossRef]
- Olavsbråten, M.; Mathiesen, T.; Berry, E. Design of an efficient wideband (1–5GHz) 10W PA in GaN technology using harmonic tuning. In Proceedings of the 2017 IEEE 18th Wireless and Microwave Technology Conference (WAMICON), Cocoa Beach, FL, USA, 24–25 April 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Colantonio, P.; Giannini, F.; Giofre, R.; Limiti, E.; Serino, A.; Peroni, M.; Romanini, P.; Proietti, C. A C-band high-efficiency second-harmonic-tuned hybrid power amplifier in GaN technology. IEEE Trans. Microw. Theory Tech. 2006, 54, 2713–2722. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Lin, V.C.; Nandhasri, K.; Ngarmnil, J. New high-efficiency 2.5 V/0.45 W RWDM class-D audio amplifier for portable consumer electronics. IEEE Trans. Circuits Syst. I Regul. Pap. 2005, 52, 1767–1774. [Google Scholar] [CrossRef]
- Dooley, J.; Farrell, R. A Practical Class S Power Amplifier for High Frequency Transmitters. In Proceedings of the Royal Irish Academy Colloquium on Emerging Trends in Wireless Communications 2008, Dublin, Ireland, 23–24 April 2008. [Google Scholar]
- Sokal, N. Class E high-efficiency power amplifiers, from HF to microwave. In Proceedings of the 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No.98CH36192), Baltimore, MD, USA, 7–12 June 1998; Volume 2, pp. 1109–1112. [Google Scholar] [CrossRef]
- Abbasian, S.; Johnson, T. Effect of Second and Third Harmonic Input Impedances in a Class-F Amplifier. Prog. Electromagn. Res. C 2015, 56, 39–53. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Colantonio, P.; Giannini, F.; Yu, H.; Lin, C. S-Band Class-C-F Power Amplifier with 2nd Harmonic Control at the Input. Appl. Sci. 2020, 10, 259. [Google Scholar] [CrossRef] [Green Version]
- Colantonio, P.; Giannini, F.; Leuzzi, G.; Limiti, E. Multiharmonic manipulation for highly efficient microwave power amplifiers. Int. J. Microw.-Comput.-Aided Eng. 2001, 11, 366–384. [Google Scholar] [CrossRef]
- Colantonio, P.; Giannini, F.; Leuzzi, G.; Limiti, E. Very high efficiency microwave amplifier. The harmonic manipulation approach. In Proceedings of the 13th International Conference on Microwaves, Radar and Wireless Communications. MIKON-2000, Conference Proceedings (IEEE Cat. No.00EX428). Wroclaw, Poland, 22–24 May 2000; Volume 3, pp. 33–46. [Google Scholar] [CrossRef]
- Smith, R.; Glynn, S.; Greene, J.; Devlin, L. A Fully Integrated 3.5 GHz Single Chip GaN Doherty PA for sub-6 GHz 5Ge. 2019. Available online: https://www.rfglobalnet.com/doc/a-fully-integrated-ghz-single-chip-gan-doherty-pa-for-sub-ghz-g-0001 (accessed on 4 July 2021).
- Global Mobile Supplier Association Spectrum for Terrestrial 5G Networks: Licensing Developments Worldwide. 2019. Available online: http://comitatomcs.eu/wp-content/uploads/2019/08/190730-GSA-5G-spectrum-report-July.pdf (accessed on 22 July 2021).
- Barret, J. 5G Spectrum Bands. 2017. Available online: https://gsacom.com/5g-spectrum-bands/ (accessed on 22 July 2021).
- Pengelly, R.S.; Wood, S.M.; Milligan, J.W.; Sheppard, S.T.; Pribble, W.L. A Review of GaN on SiC High Electron-Mobility Power Transistors and MMICs. IEEE Trans. Microw. Theory Tech. 2012, 60, 1764–1783. [Google Scholar] [CrossRef]
- Pisa, S.; Chicarella, S.; Cusani, R.; Citrolo, J. 30–512 MHz power amplifier design using GaN transistor. Microw. Opt. Technol. Lett. 2018, 60, 1280–1286. [Google Scholar] [CrossRef]
- Colantonio, P.; Giannini, F.; Leuzzi, G.; Limiti, E. Theoretical facet and experimental results of harmonic tuned PAs. Int. J. Microw.-Comput.-Aided Eng. 2003, 13, 459–472. [Google Scholar] [CrossRef]
- Rollett, J. Stability and Power-Gain Invariants of Linear Twoports. IRE Trans. Circuit Theory 1962, 9, 29–32. [Google Scholar] [CrossRef] [Green Version]
- Woods, D. Reappraisal of the unconditional stability criteria for active 2-port networks in terms of S parameters. IEEE Trans. Circuits Syst. 1976, 23, 73–81. [Google Scholar] [CrossRef]
- Edwards, M.; Sinsky, J. A new criterion for linear 2-port stability using a single geometrically derived parameter. IEEE Trans. Microw. Theory Tech. 1992, 40, 2303–2311. [Google Scholar] [CrossRef]
- Pisa, S.; Zolesi, M. A method for stability analysis of small-signal microwave amplifiers. Int. J. Microw.-Comput.-Aided Eng. 1998, 8, 293–302. [Google Scholar] [CrossRef]
- Gonzalez, G. Microwave Transistor Amplifiers: Analysis and Design, 2nd ed.; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1996. [Google Scholar]
- Drews, S.; Rautschke, F.; Maassen, D.; Nghe, C.T.; Boeck, G. A 10-W S-band power amplifier for future 5G communication. In Proceedings of the 2017 47th European Microwave Conference (EuMC), Nuremberg, Germany, 1–10 October 2017; pp. 152–155. [Google Scholar] [CrossRef]
- Duffy, M.R.; Berry, E.; Lasser, G.; Popović, Z. An Efficient Linearized Octave-Bandwidth Power Amplifier for Carrier Aggregation. In Proceedings of the 2018 IEEE/MTT-S International Microwave Symposium-IMS, Philadelphia, PA, USA, 10–15 June 2018; pp. 473–476. [Google Scholar] [CrossRef]
- Smith, R.; Devlin, L.; Tran, K.; Martin, R. An Adaptable GaN Power Amplifier for S-Band Radar. 2021. Available online: https://www.prfi.com/wp-content/uploads/2019/10/An-Adaptable-GaN-Power-Amplifier-for-S-Band-Radar.pdf (accessed on 22 July 2021).
- Liu, C.; Li, X.; Zhao, Y.; Qi, T.; Du, X.; Chen, W.; Ghannouchi, F.M. Investigation of High-Efficiency Parallel-Circuit Class-EF Power Amplifiers With Arbitrary Duty Cycles. IEEE Trans. Ind. Electron. 2021, 68, 5000–5012. [Google Scholar] [CrossRef]
- Zhou, L.H.; Zhou, X.Y.; Chan, W.S.; Sharma, T.; Ho, D. Wideband Class-F-1 Power Amplifier With Dual-Quad-Mode Bandpass Response. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 2239–2249. [Google Scholar] [CrossRef]
- Ochoa-Armas, D.; Lavandera-Hernández, I.; Fernández-Ramón, D.; Loo-Yau, J.R.; Molina-Ceseña, M.; Pérez-Wences, C.; Hernández-Domínguez, E.A.; Reynoso-Hernández, J.A.; Moreno, P. A nonlinear empirical I/V model for GaAs and GaN FETs suitable to design power amplifiers. Int. J. Microw.-Comput.-Aided Eng. 2021, 31, e22552. [Google Scholar] [CrossRef]
- Abdurrakhman Hamid, A.; Alam, B.R. Power Amplifier Design in Broadband RF IC Transponder for Manufacture 4.0 RF Link. In Proceedings of the 2019 International Symposium on Electronics and Smart Devices (ISESD), Badung, Indonesia, 8–9 October 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Góralczyk, M. A 3.4 to 3.8 GHz 45 W Inverted 3-Way Doherty Power Amplifier. In Proceedings of the 2020 23rd International Microwave and Radar Conference (MIKON), Warsaw, Poland, 5–8 October 2020; pp. 420–423. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, X.; Gai, C.; Du, X.; Helaoui, M.; Ghannouchi, F. Optimal Fundamental Load Modulation for Class-X Harmonically Tuned Power Amplifier. In Proceedings of the 2019 IEEE Asia-Pacific Microwave Conference (APMC), Hong Kong, China, 15 May 2019; pp. 1649–1651. [Google Scholar] [CrossRef]
Freq. (GHz) | ||||
---|---|---|---|---|
Ideal | Synthesized | Ideal | Synthesized | |
3.55 | ||||
7.1 | ||||
10.65 |
Ref. | Year | Freq (GHz) | (%) | Pout (dBm) | PAE(%) | Gain (dB) |
---|---|---|---|---|---|---|
[9] | 2017 | 3.7 | 133 | 40.7 | 46.8 | 10 |
[29] | 2017 | 3.5 | 75 | 40 | 48 | 10.5 |
[30] | 2018 | 3.5 | 67 | 41.7 | 47.5 | 9 |
[31] | 2019 | 3.5 | 12 | 43.4 | 52.6 | 14 |
[32] | 2020 | 3.7 | 3 | 38 | 61 | 10 |
[33] | 2020 | 3.6 | 7 | 38.5 | 52 | 12.8 |
[34] | 2021 | 3.6 | NA | 39.9 | 52 | 7.2 |
[35] | 2019 | 2.4 | 4.1 | 39.4 | 50 | NA |
[36] | 2020 | 3.7 | 11 | 46.6 | 62.6 | 6.5 |
[37] | 2019 | 0.8 | NA | 42 | 64 | 14 |
T.W. | 2021 | 3.7 | 8.4 | 42.3 | 53.5 | 9.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghisotti, S.; Pisa, S.; Colantonio, P. S Band Hybrid Power Amplifier in GaN Technology with Input/Output Multi Harmonic Tuned Terminations. Electronics 2021, 10, 2318. https://doi.org/10.3390/electronics10182318
Ghisotti S, Pisa S, Colantonio P. S Band Hybrid Power Amplifier in GaN Technology with Input/Output Multi Harmonic Tuned Terminations. Electronics. 2021; 10(18):2318. https://doi.org/10.3390/electronics10182318
Chicago/Turabian StyleGhisotti, Sandro, Stefano Pisa, and Paolo Colantonio. 2021. "S Band Hybrid Power Amplifier in GaN Technology with Input/Output Multi Harmonic Tuned Terminations" Electronics 10, no. 18: 2318. https://doi.org/10.3390/electronics10182318
APA StyleGhisotti, S., Pisa, S., & Colantonio, P. (2021). S Band Hybrid Power Amplifier in GaN Technology with Input/Output Multi Harmonic Tuned Terminations. Electronics, 10(18), 2318. https://doi.org/10.3390/electronics10182318