Intellectual Property Theft Protection in IoT Based Precision Agriculture Using SDN
Abstract
:1. Introduction
1.1. Scientific Progression in IoT Based PA
1.2. Current Situation of Intellectual Property in PA
1.3. Impact of Intellectual Capital Theft in PA
2. Literature Survey
3. Architecture of the Proposed Framework
3.1. Precision Agricultural Network
3.2. Management of IP Rights and Foreign Agents
3.3. IoT-SDN Gateway Integration
3.4. Proposed Algorithm
Algorithm 1: Proposed Foreign Agent Selection Algorithm | |
Input: Number of External Devices (E), Registered with Password (R), Operational Time (T), Operational Speed (S) and Acceptable Delay (D) | |
Output: Foreign Agent Selection, Time and Delay | |
1: | Initialize the Variables |
2: | while (1) do |
3: 4: 5: 6: 7: | T[0] ←T //Initialize Time S[0] ← S //Initialize Speed D[0] ← D //Initialize Acceptable Delay Time = 0 //Initial total execution time Delay = 0 //Initial total delay |
8: | for i ← 1 to E do |
9: | if (PW[i] != R) then |
10: | PW[i] ← R |
11: | end if |
12: | if (T[i] != T[0] and S[i] != S[0] and D[i] != D[0]) then |
13: 14: 15: 16: | T[i] ← T //Update Time S[i] ← S //Update Speed D[i] ← D //Update Acceptable Delay FA [i] ← E[i] //Foreign Agent Selection |
17: | PA[i] ← PA[i] + E[i] |
18: 19: | else FA [i] ← E[i] //Foreign Agent Selection |
20: | PA[i] ← PA[i] + E[i] |
21: 22: 23: 24: | end if Time ← Time + T[i] * S[i] Delay ← Delay + D[i] return FA[i] //Return Selected Foreign Agent |
25: 26: 27: | end for Timeavg = Time/E Delayavg = Delay/E |
28: | end while |
3.5. Mechanical Modification
3.6. SDN Implementation
4. Evaluation and Results Analysis
4.1. Environmental Setup
4.2. Network Configuration
4.3. Performance Matrices
- A.Throughput
- B.Round Trip Time
- C.Cumulative Distribution
- D.Jitter
- E.Packet Error Rate
- F.Quantitative Error Rate Comparison with Existing Works
5. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Dorri, A.; Kanhere, S.S.; Jurdak, R.; Gauravaram, P. Blockchain for IoT security and privacy: The case study of a smart home. In Proceedings of the 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Kona, HI, USA, 13–17 March 2017; pp. 618–623. [Google Scholar]
- Zhang, X.; Davidson, E.A. Improving nitrogen and water management in crop production on a national scale. Am. Geophys. Union 2018, 2018, B22B-01. [Google Scholar]
- Mekala, M.S.; Viswanathan, P. A survey: Smart agriculture IoT with cloud computing. In Proceedings of the 2017 International conference on Microelectronic Devices, Circuits and Systems (ICMDCS), ICMDCS’17, Vellore, India, 10–12 August 2017; pp. 1–7. [Google Scholar]
- Hossain, S.; Waheed, S.; Rahman, Z.; Shezan, A.; Hossain, M. Blockchain for the security of internet of things: A smart home use case using ethereum. Int. J. Recent Technol. Eng. 2020, 8, 4601–4608. [Google Scholar] [CrossRef]
- Singh, S.; Hosen, A.S.; Yoon, B. Blockchain security attacks, challenges, and solutions for the future distributed IoT network. IEEE Access 2021, 9, 13938–13959. [Google Scholar] [CrossRef]
- Rathee, G.; Sharma, A.; Iqbal, R.; Aloqaily, M.; Jaglan, N.; Kumar, R. A blockchain framework for securing connected and autonomous vehicles. Sensors 2019, 19, 3165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosen, A.S.M.S.; Sharma, P.K.; Cho, G.H. MSRM-IoT: A reliable resource management for cloud, fog and mist assisted IoT networks. IEEE Internet Things J. 2021. [Google Scholar] [CrossRef]
- Islam, N.; Farhin, F.; Sultana, I.; Kaiser, M.S.; Rahman, M.S. Towards machine learning based intrusion detection in IoT networks. Comput. Mater. Contin. 2021, 69, 1801–1821. [Google Scholar] [CrossRef]
- Rahman, A.; Hossain, S.; Rahman, Z.; Shezan, S.A. Performance enhancement of the internet of things with the integrated blockchain technology using RSK sidechain. Int. J. Adv. Technol. Eng. Explor. 2019, 6, 257–266. [Google Scholar] [CrossRef]
- Charania, I.; Li, X. Smart farming: Agriculture’s shift from a labor intensive to technology native industry. Internet Things 2020, 9, 100142. [Google Scholar] [CrossRef]
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision; ESA Working Paper Rome; FAO: Rome, Italy, 2012.
- Ahmed, N.; De, D.; Hussain, I. Internet of things (IoT) for smart precision agriculture and farming in rural areas. IEEE Internet Things J. 2018, 5, 4890–4899. [Google Scholar] [CrossRef]
- Hossen, S.; Rahman, H.; Mustanjid, A.; Nobin, A.S.; Habib, A. Enhancing quality of service in SDN based on multi-path routing optimization with DFS. In Proceedings of the 2019 International Conference on Sustainable Technologies for Industry 4.0 (STI), Dhaka, Bangladesh, 24–25 December 2019. [Google Scholar]
- Maksymyuk, T.; Dumych, S.; Brych, M.; Satria, D.; Jo, M. An IoT based monitoring framework for software defined 5G mobile networks. In Proceedings of the Proceedings of the 11th International Conference on Ubiquitous Information Management and Communication, Beppu, Japan, 5–7 January 2017. [Google Scholar]
- Psannis, K.E.; Stergiou, C.; Gupta, B.B. Advanced media-based smart big data on intelligent cloud systems. IEEE Trans. Sustain. Comput. 2018, 4, 77–87. [Google Scholar] [CrossRef]
- Fastellini, G.; Schillaci, C. Precision farming and IoT case studies across the world. In Agricultural Internet of Things and Decision Support for Precision Smart Farming; Academic Press: Cambridge, MA, USA, 2020; pp. 331–415. [Google Scholar]
- Song, H.; Zhang, D.; Jara, A.; Wan, J.; Boussetta, K. IEEE access special section editorial: Smart cities. IEEE Access 2016, 4, 3671–3674. [Google Scholar] [CrossRef]
- Lee, M.; Hwang, J.; Yoe, H. Agricultural production system based on IoT. In Proceedings of the 2013 IEEE 16th International Conference on Computational Science and Engineering, Sydney, NSW, Australia, 3–5 December 2013; pp. 833–837. [Google Scholar]
- Sharma, P.K.; Singh, S.; Jeong, Y.-S.; Park, J.H. DistBlockNet: A distributed blockchains-based secure SDN architecture for IoT networks. IEEE Commun. Mag. 2017, 55, 78–85. [Google Scholar] [CrossRef]
- Mukherjee, B.K. An SDN based distributed iot network with nfv implementation for smart cities. In International Conference on Cyber Security and Computer Science; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Wang, Y.; Bi, J. A solution for IP mobility support in software defined networks. In Proceedings of the 2014 23rd International Conference on Computer Communication and Networks (ICCCN), Shanghai, China, 4–7 August 2014. [Google Scholar]
- Islam, M.J. Distblacknet: A distributed secure black sdn-iot architecture with nfv implementation for smart cities. In Proceedings of the 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), Cox’sBazar, Bangladesh, 7–9 February 2019. [Google Scholar]
- Rahman, A. Distblockbuilding: A distributed blockchain-based sdn-iot network for smart building management. IEEE Access 2020, 8, 140008–140018. [Google Scholar] [CrossRef]
- Le, L.V.; Do, S.; Lin, B.-S.P.; Tung, L.-P. Big Data and Machine Learning Driven Open5GMEC for Vehicular Communications. Trans. Networks Commun. 2018, 6, 103. [Google Scholar] [CrossRef]
- Cauteruccio, F.; Cinelli, L.; Corradini, E.; Terracina, G.; Ursino, D.; Virgili, L.; Savaglio, C.; Liotta, A.; Fortino, G. A framework for anomaly detection and classification in Multiple IoT scenarios. Future Gener. Comput. Syst. 2021, 114, 322–335. [Google Scholar] [CrossRef]
- Rahman, H.; Islam, N.; Swapna, A.I.; Habib, A. Analysis of software defined wireless network with IP mobility in multiple controllers domain. In International Conference on Cyber Security and Computer Science; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Hosen, A.S.M.S.; Singh, S.; Mariappan, V.; Kaur, M.; Cho, G.H. A secure and privacy preserving partial deterministic RWP model to reduce overlapping in IoT sensing environment. IEEE Access 2019, 7, 39702–39716. [Google Scholar] [CrossRef]
- Kim, H.; Feamster, N. Improving network management with software defined networking. IEEE Commun. Mag. 2013, 51, 114–119. [Google Scholar] [CrossRef]
- McKeown, N. OpenFlow: Enabling innovation in campus networks. ACM SIGCOMM Comput. Commun. Rev. 2008, 38, 69–74. [Google Scholar] [CrossRef]
- Bhandari, K.S.; Hosen, A.S.M.S.; Cho, G.H. CoAR: Congestion-aware routing protocol for low power and lossy networks for IoT applications. Sensors 2018, 18, 3838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caraguay, V.; Leonardo, Á. SDN: Evolution and opportunities in the development IoT applications. Int. J. Distrib. Sens. Netw. 2014, 10, 735142. [Google Scholar] [CrossRef] [Green Version]
- Hosen, A.S.M.S.; Cho, G.H. An energy centric cluster-based routing protocol for wireless sensor networks. Sensors 2018, 18, 1520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shete, R.; Agrawal, S. IoT based urban climate monitoring using Raspberry Pi. In Proceedings of the 2016 International Conference on Communication and Signal Processing (ICCSP), Melmaruvathur, India, 6–8 April 2016; pp. 2008–2012. [Google Scholar]
- Hosen, A.S.; Singh, S.; Sharma, P.K.; Rahman, M.S.; Ra, I.H.; Cho, G.H.; Puthal, D. A QoS-aware data collection protocol for LLNs in fog-enabled internet of things. IEEE Trans. Netw. Serv. Manag. 2019, 17, 430–444. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.; Ma, Y.; Zhang, Y.; Huang, Q. Design and implementation of an agricultural IoT based on LoRa. In Proceedings of the MATEC Web of Conferences, Beijing, China, 18–25 May 2018; Volume 189, p. 04011. [Google Scholar]
- Boonchieng, E.; Chieochan, O.; Saokaew, A. Smart farm: Applying the use of NodeMCU, IOT, NETPIE and LINE API for a Lingzhi mushroom farm in Thailand. IEICE Trans. Commun. 2018, 101, 16–23. [Google Scholar] [CrossRef] [Green Version]
Authors | Focus | Technology | Platform | Protocol | QoS | Throughput |
---|---|---|---|---|---|---|
T. Maksymyuk, et al. [14] | Network Monitoring | 5G, SDN and IoT | -- | MQTT | Signal Strength compared among small and macro cell | -- |
P. K. Sharma et al. [19] | Distributed Network Management | IoT, SDN and Blockchain | Mininet 2.1.0 | OpenFlow DistFlow | Compared Bandwidth of OpenFlow with DistSoft | -- |
B. K. Mukherjee et al. [20] | Smart City Management | IoT, SDN and NFV | Mininet WiFi | OpenFlow | Compared RTT with OpenFlow Protocol for three cluster | Compared with OpenFlow Protocol for three cluster |
Y. Wang et al. [21] | Mobility Management | SDN | Mininet 2.1.0 | Network Layer-3 | Compared RTT for 3 different protocols with handover | -- |
A. Rahman et al. [22] | Smart City Management | IoT, SDN and NFV | Mininet 2.2.1 | OpenFlow | Compared RTT with OpenFlow Protocol | Compared with OpenFlow Protocol |
A. Rahman et al. [23] | Building Management | IoT, SDN and Blockchain | Mininet WiFi | OpenFlow | Compared RTT for 3 different size networks with OpenFlow Protocol | Compared with extended MINA architecture |
D. Sinh, et al. [24] | Network Management | SDN, NFV and IoT | Mininet 2.0.0 | OpenFlow | Reachability and network slicing | -- |
F. Cauteruccio, et al. [25] | Smart City Management | IoT | MIoT | IPSO | Average running time | Anomaly degree and percentage |
Proposed | Security in Precision Agriculture | IoT and SDN | Mininet WiFi | OpenFlow | Compared RTT, Jitter, PER with mobility | Compared with OF protocol and 3 different clusters |
Parameters | Parameter Values |
---|---|
Simulator | Mininet WiFi |
Simulation Area | 300 m × 300 m |
Number of Nodes | 1–100 |
SDN Controller | 1 |
OpenFlow Switches | 5 |
Gateway | 1 |
Simulation Times | 120 s |
Data Rate | 110 Kbps |
Routing Protocol | OpenFlow |
Measurement Metrics | Throughput, Round Trip Time (RTT), Cumulative Distribution Function (CDF), Jitter and Packet Error Rate (PER) |
Author | Technology | Protocol | Error Type | Error Rate |
---|---|---|---|---|
M. H. Rahman et al. [26] | SDN | OpenFlow | Packet | 6.87% |
R. Shete et al. [33] | IoT | MQTT | Information | 8.65% |
A. S. Hosen et al. [34] | IoT | EADC | Packet | 9.8% |
CHP | 9.23% | |||
J. Jin et al. [35] | IoT | LoRa | Information | 5.7% |
E. Boonchieng et al. [36] | IoT + NETPIE | MQTT | Information | 5% |
Proposed | IoT + SDN | LoRa + OpenFlow | Packet | 3.34% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossain, M.S.; Rahman, M.H.; Rahman, M.S.; Hosen, A.S.M.S.; Seo, C.; Cho, G.H. Intellectual Property Theft Protection in IoT Based Precision Agriculture Using SDN. Electronics 2021, 10, 1987. https://doi.org/10.3390/electronics10161987
Hossain MS, Rahman MH, Rahman MS, Hosen ASMS, Seo C, Cho GH. Intellectual Property Theft Protection in IoT Based Precision Agriculture Using SDN. Electronics. 2021; 10(16):1987. https://doi.org/10.3390/electronics10161987
Chicago/Turabian StyleHossain, Md. Selim, Md. Habibur Rahman, Md. Sazzadur Rahman, A. S. M. Sanwar Hosen, Changho Seo, and Gi Hwan Cho. 2021. "Intellectual Property Theft Protection in IoT Based Precision Agriculture Using SDN" Electronics 10, no. 16: 1987. https://doi.org/10.3390/electronics10161987
APA StyleHossain, M. S., Rahman, M. H., Rahman, M. S., Hosen, A. S. M. S., Seo, C., & Cho, G. H. (2021). Intellectual Property Theft Protection in IoT Based Precision Agriculture Using SDN. Electronics, 10(16), 1987. https://doi.org/10.3390/electronics10161987