Battery Durability and Reliability under Electric Utility Grid Operations: Analysis of On-Site Reference Tests
Abstract
:1. Introduction
2. Experimental
2.1. Overall Systems Description and Usage
2.2. Manufacturer’s Reference Testing
2.3. HNEI’s Reference Testing (HRT)
2.4. HNEI’s Laboratory Battery Testing & Incremental Capacity Analysis
3. Results
3.1. Field Data
3.2. Laboratory Data
4. Discussion
4.1. Overall Usage of the BESS
4.2. Open Circuit Voltages & Module Capacities
- -
- First, two good RCVs where the modules reached their equilibrium voltages. This usually requires long rests, ideally at a charged and discharged state.
- -
- Second, the measured RCVs must not be on a voltage plateau.
- -
- Third, an accurate OCV vs. SOC curve. Based on the information provided to us, Altairnano might be using a 10 points OCV vs. SOC curve. The method of interpolation between the points was not disclosed. From our laboratory testing, a higher resolution OCV vs. curve (1001 points, extracted from [31]) was available and used in this work.
- -
4.3. Degradation Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations and Nomenclature
BESS | Battery Energy Storage System |
FOI | Feature of Interest |
HNEI | Hawaii Natural Energy Institute |
HRT | HNEI Reference Test |
IC | Incremental Capacity |
LAM | Loss of Active Material |
LCO | Lithium Cobalt Oxide |
LLI | Loss of Lithium Inventory |
LRU | Line Replacement Unit |
LTO | Lithium Titanium Oxide |
MRT | Manufacturer Reference Test |
NCA | Nickel Aluminum Cobalt Oxide |
NE | Negative Electrode |
OCV | Open Circuit Voltage |
PE | Positive Electrode |
PCC | Point of Common Coupling |
RCV | Rest Cell Voltage |
SOH | State of Health |
SOC | State of Charge |
- -
- P/x refers to rated power usage, P/1 being a full charge or discharge in 1 h.
- -
- Black circled numbers refer to the RCV measured during the HRT test.
- -
- White circled numbers refer to the RCV measured during the MRT test.
- -
- Letters A to F refer to electrochemical peaks on Figure 8.
- -
- Q refers to capacity, V to voltage, and I to current.
Appendix A
References
- Yang, Y.; Bremner, S.; Menictas, C.; Kay, M. Battery energy storage system size determination in renewable energy systems: A review. Renew. Sustain. Energy Rev. 2018, 91, 109–125. [Google Scholar] [CrossRef]
- Mohamad, F.; Teh, J. Impacts of Energy Storage System on Power System Reliability: A Systematic Review. Energies 2018, 11, 1749. [Google Scholar] [CrossRef] [Green Version]
- Stecca, M.; Ramirez Elizondo, L.; Batista Soeiro, T.; Bauer, P.; Palensky, P. A Comprehensive Review of the Integration of Battery Energy Storage Systems into Distribution Networks. IEEE Open J. Ind. Electron. Soc. 2020, 1. [Google Scholar] [CrossRef]
- Datta, U.; Kalam, A.; Shi, J. A review of key functionalities of battery energy storage system in renewable energy integrated power systems. Energy Storage 2021. [Google Scholar] [CrossRef]
- Elshurafa, A.M. The value of storage in electricity generation: A qualitative and quantitative review. J. Energy Storage 2020, 32. [Google Scholar] [CrossRef]
- Lee, T.; Glick, M.B.; Lee, J.-H. Island energy transition: Assessing Hawaii’s multi-level, policy-driven approach. Renew. Sustain. Energy Rev. 2020, 118, 109500. [Google Scholar] [CrossRef]
- Subburaj, A.S.; Pushpakaran, B.N.; Bayne, S.B. Overview of grid connected renewable energy based battery projects in USA. Renew. Sustain. Energy Rev. 2015, 45, 219–234. [Google Scholar] [CrossRef]
- Department of Enegy. DOE Global Energy Storage Database. Available online: http://www.energystorageexchange.org/projects (accessed on 13 June 2021).
- Khasawneh, H.J.; Mondal, A.; Illindala, M.S.; Schenkman, B.; Borneo, D. Evaluation and Sizing of Energy Storage Systems for Microgrids. In Proceedings of the 2015 IEEE/IAS 51st Industrial & Commercial Power Systems Technical Conference (I&CPS), Clagary, AB, Canada, 6–8 May 2015. [Google Scholar]
- Shen, J.; Dusmez, S. Optimization of Sizing and Battery Cycle Life in Battery/Ultracapacitor Hybrid Energy Storage Systems for Electric Vehicle Applications. IEEE Trans. Ind. Inform. 2014, 30, 2112–2121. [Google Scholar] [CrossRef]
- Lu, C.; Xu, H.; Pan, X.; Song, J. Optimal Sizing and Control of Battery Energy Storage System for Peak Load Shaving. Energies 2014, 7, 8396–8410. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Li, W.; Wang, C.; Polis, M.P.; Wang, Y.L.; Li, J. Reliability Evaluation of Large Scale Battery Energy Storage Systems. IEEE Trans. Smart Grid 2016, 1–11. [Google Scholar] [CrossRef]
- Zakeri, B.; Syri, S. Electrical energy storage systems: A comparative life cycle cost analysis. Renew. Sustain. Energy Rev. 2015, 42, 569–596. [Google Scholar] [CrossRef]
- Marini, A.; Latify, M.A.; Ghazizadeh, M.S.; Salemnia, A. Long-term chronological load modeling in power system studies with energy storage systems. Appl. Energy 2015, 156, 436–448. [Google Scholar] [CrossRef]
- Parlikar, A.; Hesse, H.; Jossen, A. Topology and Efficiency Analysis of Utility-Scale Battery Energy Storage Systems. In Proceedings of the 13th International Renewable Energy Storage Conference (IRES 2019), Dusseldorf, Germany, 12–14 March 2019. [Google Scholar]
- Reniers, J.M.; Mulder, G.; Howey, D.A. Unlocking extra value from grid batteries using advanced models. J. Power Sources 2021, 487. [Google Scholar] [CrossRef]
- Ren, D.; Lu, L.; Shen, P.; Feng, X.; Han, X.; Ouyang, M. Battery remaining discharge energy estimation based on prediction of future operating conditions. J. Energy Storage 2019, 25. [Google Scholar] [CrossRef]
- Gabbar, H.A.; Othman, A.M.; Abdussami, M.R. Review of Battery Management Systems (BMS) Development and Industrial Standards. Technologies 2021, 9, 28. [Google Scholar] [CrossRef]
- Lelie, M.; Braun, T.; Knips, M.; Nordmann, H.; Ringbeck, F.; Zappen, H.; Sauer, D. Battery Management System Hardware Concepts: An Overview. Appl. Sci. 2018, 8, 534. [Google Scholar] [CrossRef] [Green Version]
- Consiglio, L.; Di Lembo, G.; Noce, C.; Eckert, P.; Rasic, A.; Schuette, A. Performances of the first electric storage system of Enel Distribuzione. In Proceedings of the International Conference and Exhibition on Electricity Distribution (CIRED), Stockholm, Sweden, 10–13 June 2013; IEEE: Stockholm, Sweden, 2013; pp. 1–4. [Google Scholar]
- Koller, M.; Borsche, T.; Ulbig, A.; Andersson, G. Review of grid applications with the Zurich 1MW battery energy storage system. Electr. Power Syst. Res. 2015, 120, 128–135. [Google Scholar] [CrossRef]
- Bila, M.; Opathella, C.; Venkatesh, B. Grid connected performance of a household lithium-ion battery energy storage system. J. Energy Storage 2016, 6, 178–185. [Google Scholar] [CrossRef]
- Dubarry, M.; Devie, A.; Stein, K.; Tun, M.; Matsuura, M.; Rocheleau, R. Battery Energy Storage System battery durability and reliability under electric utility grid operations: Analysis of 3 years of real usage. J. Power Sources 2017, 338, 65–73. [Google Scholar] [CrossRef]
- Münderlein, J.; Steinhoff, M.; Zurmühlen, S.; Sauer, D.U. Analysis and evaluation of operations strategies based on a large scale 5 MW and 5 MWh battery storage system. J. Energy Storage 2019, 24, 100778. [Google Scholar] [CrossRef]
- Jannati, M.; Foroutan, E. Analysis of power allocation strategies in the smoothing of wind farm power fluctuations considering lifetime extension of BESS units. J. Clean. Prod. 2020, 266. [Google Scholar] [CrossRef]
- Abedi Varnosfaderani, M.; Strickland, D.; Ruse, M.; Brana Castillo, E. Sweat Testing Cycles of Batteries for Different Electrical Power Applications. IEEE Access 2019, 7, 132333–132342. [Google Scholar] [CrossRef]
- IRENA. Case Studies: Battery Storage; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2015; pp. 1–20. [Google Scholar]
- IRENA. Battery Storage for Renewables: Market Status and Technology Outlook; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2015; pp. 1–60. [Google Scholar]
- Karouia, F.; Ha, D.-L.; Delaplagne, T.; Bouaaziz, M.F.; Eudier, V.; Levy, M. Diagnosis and prognosis of complex energy storage systems: Tools development and feedback on four installed systems. Energy Procedia 2018, 155, 61–76. [Google Scholar] [CrossRef]
- Kubiak, P.; Cen, Z.; López, C.M.; Belharouak, I. Calendar aging of a 250 kW/500 kWh Li-ion battery deployed for the grid storage application. J. Power Sources 2017, 372, 16–23. [Google Scholar] [CrossRef]
- Dubarry, M.; Devie, A. Battery durability and reliability under electric utility grid operations: Representative usage aging and calendar aging. J. Energy Storage 2018, 18, 185–195. [Google Scholar] [CrossRef]
- Baure, G.; Devie, A.; Dubarry, M. Battery Durability and Reliability under Electric Utility Grid Operations: Path Dependence of Battery Degradation. J. Electrochem. Soc. 2019, 166, A1991–A2001. [Google Scholar] [CrossRef]
- Baure, G.; Dubarry, M. Battery durability and reliability under electric utility grid operations: 20-year forecast under different grid applications. J. Energy Storage 2020, 29. [Google Scholar] [CrossRef]
- Benato, R.; Dambone Sessa, S.; Musio, M.; Palone, F.; Polito, R. Italian Experience on Electrical Storage Ageing for Primary Frequency Regulation. Energies 2018, 11, 2087. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Omar, N.; Nanini-Maury, E.; Van den Bossche, P.; Van Mierlo, J. Performance and reliability assessment of NMC lithium ion batteries for stationary application. In Proceedings of the IEEE Vehicle Power and Propulsion Conference, VPPC 2016, Hangzhou, China, 17–20 October 2016. [Google Scholar]
- Podias, A.; Pfrang, A.; Di Persio, F.; Kriston, A.; Bobba, S.; Mathieux, F.; Messagie, M.; Boon-Brett, L. Sustainability Assessment of Second Use Applications of Automotive Batteries: Ageing of Li-Ion Battery Cells in Automotive and Grid-Scale Applications. World Electr. Veh. J. 2018, 9, 24. [Google Scholar] [CrossRef] [Green Version]
- Elliott, M.; Swan, L.G.; Dubarry, M.; Baure, G. Degradation of electric vehicle lithium-ion batteries in electricity grid services. J. Energy Storage 2020, 32. [Google Scholar] [CrossRef]
- White, C.; Thompson, B.; Swan, L.G. Comparative performance study of electric vehicle batteries repurposed for electricity grid energy arbitrage. Appl. Energy 2021, 288. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, X.; Zhou, C.; Zou, Y.; Du, Z.; Sun, M.; Ouyang, Y.; Yang, D.; Liao, Q. State-of-health estimation of batteries in an energy storage system based on the actual operating parameters. J. Power Sources 2021, 506. [Google Scholar] [CrossRef]
- Stein, K.; Tun, M.; Musser, K.; Rocheleau, R. Evaluation of a 1 MW, 250 kW-hr Battery Energy Storage System for Grid Services for the Island of Hawaii. Energies 2018, 11, 3367. [Google Scholar] [CrossRef] [Green Version]
- Stein, K.; Tun, M.; Matsuura, M.; Rocheleau, R. Characterization of a Fast Battery Energy Storage System for Primary Frequency Response. Energies 2018, 11, 3358. [Google Scholar] [CrossRef] [Green Version]
- Reihani, E.; Sepasi, S.; Roose, L.R.; Matsuura, M. Energy management at the distribution grid using a Battery Energy Storage System (BESS). Int. J. Electr. Power Energy Syst. 2016, 77, 337–344. [Google Scholar] [CrossRef]
- Dubarry, M.; Baure, G.; Anseán, D. Perspective on State-of-Health Determination in Lithium-Ion Batteries. J. Electrochem. Energy Convers. Storage 2020, 17, 1–25. [Google Scholar] [CrossRef]
- Barai, A.; Uddin, K.; Dubarry, M.; Somerville, L.; McGordon, A.; Jennings, P.; Bloom, I. A comparison of methodologies for the non-invasive characterisation of commercial Li-ion cells. Progr. Energy Combust. Sci. 2019, 72, 1–31. [Google Scholar] [CrossRef]
- Dubarry, M.; Baure, G. Perspective on Commercial Li-ion Battery Testing, Best Practices for Simple and Effective Protocols. Electronics 2020, 9, 152. [Google Scholar] [CrossRef] [Green Version]
- HNEI Alawa Central. Available online: https://www.soest.hawaii.edu/HNEI/alawa/ (accessed on 1 July 2021).
- Dubarry, M.; Truchot, C.; Liaw, B.Y. Synthesize battery degradation modes via a diagnostic and prognostic model. J. Power Sources 2012, 219, 204–216. [Google Scholar] [CrossRef]
- Kassem, M.; Delacourt, C. Postmortem analysis of calendar-aged graphite/LiFePO4 cells. J. Power Sources 2013, 235, 159–171. [Google Scholar] [CrossRef]
- Schmidt, J.P.; Tran, H.Y.; Richter, J.; Ivers-Tiffee, E.; Wohlfahrt-Mehrens, M. Analysis and prediction of the open circuit potential of lithium-ion cells. J. Power Sources 2013, 239, 696–704. [Google Scholar] [CrossRef]
- Birkl, C.R.; Roberts, M.R.; McTurk, E.; Bruce, P.G.; Howey, D.A. Degradation diagnostics for lithium ion cells. J. Power Sources 2017, 341, 373–386. [Google Scholar] [CrossRef]
- Qian, K.; Huang, B.; Ran, A.; He, Y.-B.; Li, B.; Kang, F. State-of-health (SOH) evaluation on lithium-ion battery by simulating the voltage relaxation curves. Electrochim. Acta 2019, 303, 183–191. [Google Scholar] [CrossRef]
- Pei, L.; Wang, T.; Lu, R.; Zhu, C. Development of a voltage relaxation model for rapid open-circuit voltage prediction in lithium-ion batteries. J. Power Sources 2014, 253, 412–418. [Google Scholar] [CrossRef]
- Lewerenz, M.; Fuchs, G.; Becker, L.; Sauer, D.U. Irreversible calendar aging and quantification of the reversible capacity loss caused by anode overhang. J. Energy Storage 2018, 18, 149–159. [Google Scholar] [CrossRef]
- Devie, A.; Baure, G.; Dubarry, M. Intrinsic Variability in the Degradation of a Batch of Commercial 18650 Lithium-Ion Cells. Energies 2018, 11, 1031. [Google Scholar] [CrossRef] [Green Version]
- Dubarry, M.; Pastor-Fernández, C.; Baure, G.; Yu, T.F.; Widanage, W.D.; Marco, J. Battery energy storage system modeling: Investigation of intrinsic cell-to-cell variations. J. Energy Storage 2019, 23, 19–28. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubarry, M.; Tun, M.; Baure, G.; Matsuura, M.; Rocheleau, R.E. Battery Durability and Reliability under Electric Utility Grid Operations: Analysis of On-Site Reference Tests. Electronics 2021, 10, 1593. https://doi.org/10.3390/electronics10131593
Dubarry M, Tun M, Baure G, Matsuura M, Rocheleau RE. Battery Durability and Reliability under Electric Utility Grid Operations: Analysis of On-Site Reference Tests. Electronics. 2021; 10(13):1593. https://doi.org/10.3390/electronics10131593
Chicago/Turabian StyleDubarry, Matthieu, Moe Tun, George Baure, Marc Matsuura, and Richard E. Rocheleau. 2021. "Battery Durability and Reliability under Electric Utility Grid Operations: Analysis of On-Site Reference Tests" Electronics 10, no. 13: 1593. https://doi.org/10.3390/electronics10131593
APA StyleDubarry, M., Tun, M., Baure, G., Matsuura, M., & Rocheleau, R. E. (2021). Battery Durability and Reliability under Electric Utility Grid Operations: Analysis of On-Site Reference Tests. Electronics, 10(13), 1593. https://doi.org/10.3390/electronics10131593