A Quad-Band RF Circuit for Enhancement of Energy Harvesting
Abstract
:1. Introduction
2. Related Work
3. System Modeling
4. Design and Simulation
4.1. Single-Band Circuit
4.2. Quad-Band Circuit Design
4.2.1. Scenario 1: Quad-Band Circuit with a Single Receiving Antenna
4.2.2. Scenario 2: Quad-Band Circuit with Four Receiving Antennas
5. Simulation Results and Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Masud, P.M. A Methodology for Designing 2.45 GHz Wireless Rectenna System Utilizing Dickson Charge Pump with Optimized Power Efficiency. Ph.D. Thesis, University of Waterloo, Waterloo, ON, Canada, 2013. [Google Scholar]
- Song, C. Broadband Rectifying-Antennas for Ambient RF Energy Harvesting and Wireless Power Transfer. Ph.D. Thesis, University of Liverpool, Liverpool, UK, 2017. [Google Scholar]
- Awais, Q.; Jin, Y.; Chattha, H.T.; Jamil, M.; Qiang, H.; Khawaja, B.A. A compact rectenna system with high conversion efficiency for wireless energy harvesting. IEEE Access 2018, 6, 35857–35866. [Google Scholar] [CrossRef]
- Vullers, R.J.M.; van Schaijk, R.; Doms, I.; Van Hoof, C.; Mertens, R. Micropower Energy Harvesting. Solid-State Electron. 2009, 53, 684–693. [Google Scholar] [CrossRef]
- Akhtar, F.; Rehmani, M.H. Energy Replenishment Using Renewable and Traditional Energy Resources for Sustainable Wireless Sensor Networks: A Review. Renew. Sustain. Energy Rev. 2015, 45, 769–784. [Google Scholar] [CrossRef]
- Lu, X.; Yang, S.-H. Thermal Energy Harvesting for WSNs. In Proceedings of the 2010 IEEE International Conference on Systems, Man and Cybernetics, Istanbul, Turkey, 10–13 October 2010; pp. 3045–3052. [Google Scholar]
- Dalola, S.; Ferrari, V.; Marioli, D. Pyroelectric Effect in PZT Thick Films for Thermal Energy Harvesting in Low-Power Sensors. Procedia Eng. 2010, 5, 685–688. [Google Scholar] [CrossRef]
- Cuadras, A.; Gasulla, M.; Ferrari, V. Thermal Energy Harvesting through Pyroelectricity. Sens. Actuators A Phys. 2010, 158, 132–139. [Google Scholar] [CrossRef]
- Raghunathan, V.; Kansal, A.; Hsu, J.; Friedman, J.; Srivastava, M. Design Considerations for Solar Energy Harvesting Wireless Embedded Systems. In Proceedings of the Fourth International Symposium on Information Processing in Sensor Networks, Los Angeles, CA, USA, 25–27 April 2005. [Google Scholar]
- Brunelli, D.; Benini, L.; Moser, C.; Thiele, L. An Efficient Solar Energy Harvester for Wireless Sensor Nodes. In Proceedings of the 2008 Design, Automation and Test in Europe, Munich, Germany, 10–14 March 2008; pp. 104–109. [Google Scholar]
- Abdin, Z.; Alim, M.A.; Saidur, R.; Islam, M.R.; Rashmi, W.; Mekhilef, S.; Wadi, A. Solar Energy Harvesting with the Application of Nanotechnology. Renew. Sustain. Energy Rev. 2013, 26, 837–852. [Google Scholar] [CrossRef]
- Ackermann, T. Wind Energy Technology and Current Status: A Review. Renew. Sustain. Energy Rev. 2000, 4, 315–374. [Google Scholar] [CrossRef]
- Herbert, G.J.; Iniyan, S.; Sreevalsan, E.; Rajapandian, S. A Review of Wind Energy Technologies. Renew. Sustain. Energy Rev. 2007, 11, 1117–1145. [Google Scholar] [CrossRef]
- Sahin, A. Progress and Recent Trends in Wind Energy. Prog. Energy Combust. Sci. 2004, 30, 501–543. [Google Scholar] [CrossRef]
- Cao, X.; Chiang, W.-J.; King, Y.-C.; Lee, Y.-K. Electromagnetic Energy Harvesting Circuit With Feedforward and Feedback DC–DC PWM Boost Converter for Vibration Power Generator System. IEEE Trans. Power Electron. 2007, 22, 679–685. [Google Scholar] [CrossRef] [Green Version]
- Beeby, S.P.; Torah, R.N.; Tudor, M.J.; Glynne-Jones, P.; O’Donnell, T.; Saha, C.R.; Roy, S. A Micro Electromagnetic Generator for Vibration Energy Harvesting. J. Micromech. Microeng. 2007, 17, 1257–1265. [Google Scholar] [CrossRef]
- Yang, B.; Lee, C.; Xiang, W.; Xie, J.; Han He, J.; Kotlanka, R.K.; Low, S.P.; Feng, H. Electromagnetic Energy Harvesting from Vibrations of Multiple Frequencies. J. Micromech. Microeng. 2009, 19, 035001. [Google Scholar] [CrossRef]
- Beeby, S.P.; Tudor, M.J.; White, N.M. Energy Harvesting Vibration Sources for Microsystems Applications. Meas. Sci. Technol. 2006, 17, 12. [Google Scholar] [CrossRef]
- Challa, V.R.; Prasad, M.G.; Shi, Y.; Fisher, F.T. A Vibration Energy Harvesting Device with Bidirectional Resonance Frequency Tunability. Smart Mater. Struct. 2008, 17, 015035. [Google Scholar] [CrossRef]
- Khaligh, A.; Zeng, P.; Zheng, C. Kinetic Energy Harvesting Using Piezoelectric and Electromagnetic Technologies—State of the Art. IEEE Trans. Ind. Electron. 2010, 57, 850–860. [Google Scholar] [CrossRef]
- Ho, D.-K.; Kharrat, I.; Ngo, V.-D.; Vuong, T.-P.; Nguyen, Q.-C.; Le, M.-T. Dual-Band Rectenna for Ambient RF Energy Harvesting at GSM 900 MHz and 1800 MHz. In Proceedings of the 2016 IEEE International Conference on Sustainable Energy Technologies (ICSET), Hanoi, Vietnam, 14–16 November 2016; pp. 306–310. [Google Scholar]
- Bakir, M.; Karaaslan, M.; Altıntaş, O.; Bagmancı, M.; Akdogan, V.; Temurtaş, F. Tunable Energy Harvesting on UHF Bands Especially for GSM Frequencies. Int. J. Microw. Wirel. Technol. 2017, 10, 67–76. [Google Scholar] [CrossRef]
- Wang, D.; Chan, C.H. Multiband Antenna for WiFi and WiGig Communications. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 309–312. [Google Scholar] [CrossRef]
- Zhu, J.; Eleftheriades, G.V. Dual-Band Metamaterial-Inspired Small Monopole Antenna for WiFi Applications. Electron. Lett. 2009, 45, 1104. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.K. The Prospect of Energy-harvesting Technologies for Healthcare Wireless Sensor Networks. In Healthcare Sensor Networks: Challenges Toward Practical Implementation, 1st ed.; Lai, D.T., Palaniswami, M., Begg, R., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 75–110. [Google Scholar]
- Othman, M.F.; Shazali, K. Wireless Sensor Network Applications: A Study in Environment Monitoring System. Procedia Eng. 2012, 41, 1204–1210. [Google Scholar] [CrossRef] [Green Version]
- Hughes, D.A. Comparison of Satellite Rainfall Data with Observations from Gauging Station Networks. J. Hydrol. 2006, 327, 399–410. [Google Scholar] [CrossRef]
- Tang, D.L.; Kester, D.R.; Wang, Z.; Lian, J.; Kawamura, H. AVHRR Satellite Remote Sensing and Shipboard Measurements of the Thermal Plume from the Daya Bay, Nuclear Power Station, China. Remote Sens. Environ. 2003, 84, 506–515. [Google Scholar] [CrossRef]
- Lyu, J.; Zeng, Y.; Zhang, R.; Lim, T.J. Placement Optimization of UAV-Mounted Mobile Base Stations. IEEE Commun. Lett. 2017, 21, 604–607. [Google Scholar] [CrossRef] [Green Version]
- Wong, K.-K.; Cheng, R.S.-K.; Letaief, K.B.; Murch, R.D. Adaptive Antennas at the Mobile and Base Stations in an OFDM/TDMA System. IEEE Trans. Commun. 2001, 49, 195–206. [Google Scholar] [CrossRef]
- Lu, J.; Yao, J.E.; Yu, C.-S. Personal Innovativeness, Social Influences and Adoption of Wireless Internet Services via Mobile Technology. J. Strateg. Inf. Syst. 2005, 14, 245–268. [Google Scholar] [CrossRef]
- Lu, J.; Yu, C.S.; Liu, C.; Yao, J.E. Technology Acceptance Model for Wireless Internet. Internet Res. 2003, 13, 206–222. [Google Scholar] [CrossRef] [Green Version]
- Fuhrmann, D.R.; San Antonio, G. Transmit Beamforming for MIMO Radar Systems Using Signal Cross-Correlation. IEEE Trans. Aerosp. Electron. Syst. 2008, 44, 171–186. [Google Scholar] [CrossRef]
- Ghelfi, P.; Laghezza, F.; Scotti, F.; Serafino, G.; Capria, A.; Pinna, S.; Onori, D.; Porzi, C.; Scaffardi, M.; Malacarne, A.; et al. A Fully Photonics-Based Coherent Radar System. Nature 2014, 507, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, H.D.; Baker, C.J. Passive Coherent Location Radar Systems. Part 1: Performance Prediction. IEE Proc. Radar, Sonar Navig. 2005, 152, 153. [Google Scholar] [CrossRef]
- Bae, S.; Hong, Y.K.; Lee, J.J.; Jalli, J.; Abo, G.S.; Lyle, A.; Seong, W.M.; Kum, J.S. Low Loss Z-Type Barium Ferrite (Co2Z) for Terrestrial Digital Multimedia Broadcasting Antenna Application. J. Appl. Phys. 2009, 105. [Google Scholar] [CrossRef]
- Ong, C.-Y.; Song, J.; Pan, C.; Li, Y. Technology and Standards of Digital Television Terrestrial Multimedia Broadcasting [Topics in Wireless Communications. IEEE Commun. Mag. 2010, 48, 119–127. [Google Scholar] [CrossRef]
- Iancu, D.; Ye, H.; Chun, J.-H.; Glossner, J.; Iancu, A.; Moudgille, M. Digital Audio/Video Broadcasting and Digital Implementation of Analog TV. In Mobile Multimedia Broadcasting Standards; Luo, F., Ed.; Springer: Boston, MA, USA, 2009; pp. 77–107. [Google Scholar]
- Cansiz, M.; Altinel, D.; Kurt, G.K. Efficiency in RF Energy Harvesting Systems: A Comprehensive Review. Energy 2019, 174, 292–309. [Google Scholar] [CrossRef]
- Kang, C.C.; Ain, M.F.; Zalzala, A.M.; Zubir, I.A. Lumped Element Equivalent Circuit Modelling for RF Energy Harvesting Antenna Array. In Proceedings of the 9th International Conference on Robotic, Vision, Signal Processing and Power Applications, Penang, Malaysia, 2–3 February 2016; pp. 455–461. [Google Scholar]
- Varghese, B.; John, N.E.; Sreelal, S.; Gopal, K. Design and Development of an RF Energy Harvesting Wireless Sensor Node (EH-WSN) for Aerospace Applications. Procedia Comput. Sci. 2016, 93, 230–237. [Google Scholar] [CrossRef] [Green Version]
- Sogorb, T.; Llario, J.V.; Pelegri, J.; Lajara, R.; Alberola, J. Studying the Feasibility of Energy Harvesting from Broadcast RF Station for WSN. In Proceedings of the 2008 IEEE Instrumentation and Measurement Technology Conference, Victoria, BC, Canada, 12–15 May 2008. [Google Scholar]
- Ercan, A.O.; Sunay, M.O.; Akyildiz, I.F. RF Energy Harvesting and Transfer for Spectrum Sharing Cellular IoT Communications in 5G Systems. IEEE Trans. Mob. Comput. 2018, 17, 1680–1694. [Google Scholar] [CrossRef]
- Khang, S.T.; Yu, J.W.; Lee, W.S. Compact Folded Dipole Rectenna with RF-Based Energy Harvesting for IoT Smart Sensors. Electron. Lett. 2015, 51, 926–928. [Google Scholar] [CrossRef]
- Le, H.N. RF Energy Harvesting Circuits with on-Chip Antenna for Biomedical Applications. In Proceedings of the 2010 3rd International Conference on Communications and Electronics (ICCE), Las Vegas, NV, USA, 7–9 January 2010; pp. 115–117. [Google Scholar]
- Davis, J.; Sankman, J.; Ma, D. An Input-Powered 1.1 MA Iq 13.56 MHz RF Energy Harvesting System for Biomedical Implantable Devices. In Proceedings of the 2015 IEEE 11th International Conference on ASIC (ASICON), Chengdu, China, 3–6 November 2015; pp. 1–4. [Google Scholar]
- Ferdous, R.M.; Reza, A.W.; Siddiqui, M.F. Renewable Energy Harvesting for Wireless Sensors Using Passive RFID Tag Technology: A Review. Renew. Sustain. Energy Rev. 2016, 58, 1114–1128. [Google Scholar] [CrossRef]
- Abdulhadi, A.E.; Abhari, R. Multiport UHF RFID-Tag Antenna for Enhanced Energy Harvesting of Self-Powered Wireless Sensors. IEEE Trans. Ind. Inform. 2016, 12, 801–808. [Google Scholar] [CrossRef]
- Uzun, Y. Design and Implementation of RF Energy Harvesting System for Low-Power Electronic Devices. J. Electron. Mater. 2016, 45, 3842–3847. [Google Scholar] [CrossRef]
- Shi, Y.; Jing, J.; Fan, Y.; Yang, L.; Li, Y.; Wang, M. A Novel Compact Broadband Rectenna for Ambient RF Energy Harvesting. AEU Int. J. Electron. Commun. 2018, 95, 264–270. [Google Scholar] [CrossRef]
- Rajawat, A.; Suri, K.; Mohta, M. Design of an Efficient Rectifier Circuit Based on Karthaus-Fischer Voltage Multiplier for Energy Harvesting. Adv. Intell. Syst. Comput. 2018, 624, 913–922. [Google Scholar]
- Li, Z.; Zeng, M.; Tan, H.-Z. A Multi-Band Rectifier with Modified Hybrid Junction for RF Energy Harvesting. Microw. Opt. Technol. Lett. 2018, 60, 817–821. [Google Scholar] [CrossRef]
- Shi, Y.; Fan, Y.; Jing, J.; Yang, L.; Li, Y.; Wang, M. An Efficient Fractal Rectenna for RF Energy Harvest at 2.45 GHz ISM Band. Int. J. Microw. Comput. Aided Eng. 2018, 28. [Google Scholar] [CrossRef]
- Chandravanshi, S.; Sarma, S.S.; Akhtar, M.J. Design of Triple Band Differential Rectenna for RF Energy Harvesting. IEEE Trans. Antennas Propag. 2018, 66, 2716–2726. [Google Scholar] [CrossRef]
- Zeng, M.; Andrenko, A.S.; Liu, X.; Li, Z.; Tan, H.-Z. A compact fractal loop rectenna for RF energy harvesting. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2424–2427. [Google Scholar] [CrossRef]
- Mansour, M.M.; Kanaya, H. Efficiency-enhancement of 2.45-GHz energy harvesting circuit using integrated CPW-MS structure at low RF input power. IEICE Trans. Electron. 2019, 5, 399–407. [Google Scholar] [CrossRef]
- Jie, A.M.; Nasimuddin, N.; Karim, M.F.; Chandrasekaran, K.T. A dual-band efficient circularly polarized rectenna for RF energy harvesting systems. Int. J. RF Microw. Comput-Aid. Eng. 2019, 29, e21665. [Google Scholar] [CrossRef]
- Singh, N.; Kanaujia, B.K.; Beg, M.T.; Kumar, S.; Khandelwal, M.K. A dual band rectifying antenna for RF energy harvesting. J. Comput. Electron. 2018, 17, 1748–1755. [Google Scholar] [CrossRef]
- Khansalee, E.; Nuanyai, K.; Zhao, Y. A dual-band rectifier for RF energy harvesting. Warasan Witsawakamsat Chulalongkorn Univ. 2015, 19, 189–197. [Google Scholar] [CrossRef]
- Mattsson, M.; Kolitsidas, C.I.; Jonsson, B.L.G. Dual-band dual-polarized full-wave rectenna based on differential field sampling. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 956–959. [Google Scholar] [CrossRef]
- Bakytbekov, A.; Nguyen, T.Q.; Huynh, C.; Salama, K.N.; Shamim, A. Fully printed 3D cube-shaped multiband fractal rectenna for ambient RF energy harvesting. Nano Energy 2018, 53, 587–595. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, X.Y. Compact triple-band rectifier for ambient RF energy harvesting application. IEEE Access 2018, 6, 19018–19024. [Google Scholar] [CrossRef]
- Moreno, J.M.; Vazquez, A.S.; Barragan, C.A.; Gonzalez, J.M.; Rosas, J.C. Radio frequency energy harvesting system making use of 180∘ hybrid couplers and multiple antennas to improve the DC output voltage. IEEE Lat. Am. Trans. 2020, 18, 604–612. [Google Scholar] [CrossRef]
- Tafekirt, H.; Pelegri-Sebastia, J.; Bouajaj, A.; Reda, B.M. A sensitive triple-band rectifier for energy harvesting applications. IEEE Access 2020, 8, 73659–73664. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Lin, S.C.; Tsai, Z.M. Quadband rectifier using resonant matching networks for enhanced harvesting capability. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 669–671. [Google Scholar] [CrossRef]
- Kuhn, V.; Lahuec, C.; Seguin, F.; Person, C. A multi-band stacked RF energy harvester with RF-to-DC efficiency up to 84%. IEEE Trans. Microw. Theory Tech. 2015, 63, 1768–1778. [Google Scholar] [CrossRef]
- Song, C.; Huang, Y.; Carter, P.; Zhou, J.; Yuan, S.; Xu, Q.; Kod, M.A. A novel six-band dual CP rectenna using improved impedance matching technique for ambient RF energy harvesting. IEEE Trans. Antennas Propag. 2016, 64, 3160–3171. [Google Scholar] [CrossRef] [Green Version]
- Adam, I.; Yasin, M.N.M.; Rahim, H.A.; Soh, P.J.; Abdulmalek, M.F. A compact dual-band rectenna for ambient RF energy harvesting. Microw. Opt. Technol. Lett. 2018, 60, 2740–2748. [Google Scholar] [CrossRef]
- Mahfoudi, H.; Tellache, M.; Takhedmit, H. A wideband rectifier array on dual-polarized differential-feed fractal slotted ground antenna for RF energy harvesting. Int. J. RF Microw. Comput-Aid. Eng. 2019, 29, e21775. [Google Scholar] [CrossRef]
- Mansour, M.M.; Kanaya, H. High-efficient broadband CPW RF rectifier for wireless energy harvesting. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 288–290. [Google Scholar] [CrossRef]
- Chandravanshi, S.; Katare, K.K.; Akhtar, M.J. Broadband integrated rectenna using differential rectifier and hybrid coupler. IET Microw. Antennas Propag. 2020, 14, 1384–1395. [Google Scholar] [CrossRef]
- Wu, P.; Huang, S.Y.; Zhou, W.; Yu, W.; Liu, Z.; Chen, X.; Liu, C. Compact high-efficiency broadband rectifier with multi-stage-transmission-line matching. IEEE Trans. Circuits Syst. II Express Briefs 2019, 66, 1316–1320. [Google Scholar] [CrossRef]
- Shieh, S.; Kamarei, M. Transient input impedance modeling of rectifiers for RF energy harvesting applications. IEEE Trans. Circuits Syst. II Express Briefs 2018, 65, 311–315. [Google Scholar] [CrossRef]
- Wang, M.; Fan, Y.; Yang, L.; Li, Y.; Feng, J.; Shi, Y. Compact dual-band rectenna for RF energy harvest based on a tree-like antenna. IET Microw. Antennas Propag. 2019, 13, 1350–1357. [Google Scholar] [CrossRef]
- Hayt, W.H. Engineering Electromagnetics, 6th ed.; McGraw-Hill: New York, NY, USA, 2001. [Google Scholar]
- Balanis, C.A. Antenna Theory: Analysis and Design, 3rd ed.; John wiley & Sons, Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Kuphaldt, T.R. Lessons in Electric Circuits, Volume I - DC, 1st ed.; Koros Press: Rickmansworth, UK, 2012. [Google Scholar]
- Agrawal, S.; Parihar, M.S.; Kondekar, P.N. A quad-band antenna for multi-band radio frequency energy harvesting circuit. Int. J. Electron. Commun. 2018, 85, 99–107. [Google Scholar] [CrossRef]
- Ali, E.M.; Yahaya, N.Z.; Saraereh, O.A.; Assaf, A.H.; Alqasem, B.H.; Iqbal, S.; Ibrahim, O.; Patel, A.V. Power Conversion Using Analytical Model of Cockcroft–Walton Voltage Multiplier Rectenna. Electronics 2021, 10, 881. [Google Scholar] [CrossRef]
- Mouapi, A.; Hakem, N.; Delisle, G.Y. A New Approach to Design of RF Energy Harvesting System to Enslave Wireless Sensor Networks. ICT Express 2018, 4, 228–233. [Google Scholar] [CrossRef]
- You, H.; Yuan, M.; Das, R.; Heidari, H.; Ghannam, R. An Efficient RF-DC Rectifier Design for RF Energy Harvesting Systems. In Proceedings of the 2020 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Scotland, UK, 23–25 November 2020. [Google Scholar]
- Tissier, J.; Latrach, M. Broadband Rectenna for Ambient RF Energy Harvesting Applications. In Proceedings of the 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), Montreal, QC, Canada, 19–26 August 2017. [Google Scholar]
Parameter | GSM-900 | GSM-1800 | UMTS-2100 | Wi-Fi 2.45 |
---|---|---|---|---|
(mm) | 78.56 | 36.87 | 31.16 | 25.92 |
(mm) | 33.10 | 27.59 | 24.55 | 21.64 |
W (mm) | 4.2 | 4.2 | 4.2 | 4.2 |
Frequency | RF-DC Conversion Efficiency (%) | Output Voltage (V) |
---|---|---|
GSM-900 | 74.846 | 1.662 |
GSM-1800 | 66.974 | 1.422 |
UMTS-2100 | 64.486 | 1.333 |
Wi-Fi 2.45 | 61.407 | 1.587 |
Frequency | RF-DC Conversion Efficiency (%) | Output Voltage (V) |
---|---|---|
GSM-900 | 71.194 | 1.373 |
GSM-1800 | 64.944 | 1.421 |
UMTS-2100 | 62.363 | 1.594 |
Wi-Fi 2.45 | 65.096 | 1.896 |
Ref. | Frequency | Rectifier Topology | Diode used | Peak at | (V) | (k) |
---|---|---|---|---|---|---|
[49] | Single-band GSM-900 | 2 stages Dickson VD + LE | HSMS-2852 | a 45% at 0 dBm | 2.1 | 10 |
[79] | Single-band 900 MHz | 7 stages Cockcroft VD + LE | HSMS 285-C | a 25.83% at +20 dBm | 17.58 | 10 |
[80] | Single-band 2.45 GHz | VD + LE | HSMS 2850 | a 49% at −5 dBm | 1.85 at 0 dBm | 3.3 |
[81] | Single-band 915 MHz | VD + LE | HSMS 2852 | a 78.7% at 8 dBm | 7.2 at 10:20 dBm | 10 |
[55] | Single-band GSM-1800 | Full-wave Greinacher + microstrip TLs | SMS7630 | b 61% at 10 W/cm2 power density | 1.8 | 12 |
[3] | Single-band 2.45 GHz | Single-stage Cockcroft VD + L-shaped IMN | HSMS-2850 | a 75.5% at 5 dBm | 3.24 | 5 |
[57] | Dual-band GSM-900 Wi-Fi 2.45 | Single-stage VD + CRLH IMN (microstrip TLs + LE) | SMS7630 | b43% and 39% at 0 dBm | NR | 1 |
[58] | Dual-band 2.1 GHz 5.8 GHz | VD + IMN (microstrip stub and microstrip TL) | HSMS-282E | a 79% at 20 dBm and 86% at 5 dBm | 3.3 and 4.52 | 1 |
[59] | Dual-band UMTS-2100 Wi-Fi 2.45 | Greinacher VD + Multi stubs IMN | HSMS-285C | b 24% and 18% | 1.9 and 1.7 | NR |
[68] | Broadband 1.8–2.5 GHz | 7 stage Dickson VD | HSMS 2850 | b 24% at -20 dBm | 0.55–1.8 | 499 |
[82] | Dual-band GSM900 GSM1800 | Latour VD + LE | Avago HSMS285x | a 68% at 985 MHz, 55% at 1900 MHz under −10 dBm | NR | 15 |
[78] | Dual-band GSM-900 Wi-Fi 2.1 | Half-wave rectifier + Lumped elements | HSMS-2852 | b 42% and 38% at 3 dBm | 2.6 at 10 dBm | 4.7 |
[69] | Wide-band 1.8–2.6 | 4 wideband rectifiers + A nonuniform TL filter | SMS7630-079LF | b 50% at 26.6 W/cm2 power density | 1 | 3 |
[61] | Triple-band: GSM-900, GSM-1800, 3 G2.1 GHz, | Half-wave rectifier+ inductor and stubs | SMS7630 | b 29.5% and 34% and 19% and (56%: 3 tones) at −10 dBm | 0.38 and 0.41 and 0.305 and (0.75:3 tones) | 11 |
[52] | Triple-band: GSM-1800 UMTS-2100 Wi-Fi 2.45 | Single-stage Villard VD for each band + Modified Hypred Junction IMN | SMS7630 | b 61.7% and 45.3% and 44.5% at 9 dBm | 3.9 and 3.335 and 3.4 | 8.2 |
This work | ★ Single-band: GSM-900 GSM-1800 UMTS-2100 Wi-Fi 2.45 Quad-band: 900 + 1800 + 2.1 + 2.45 | ★ Single-stage VD + simple IMN for each band. 4Single-stage VD + 4 simple IMN for each band combined. together | HSMS-2852 | 82.3% and 78.1% and 75.7% and 74.6% at 0 Bm. 74.846% for the first scenario whereas 71.194% for the second scenario at 0 Bm. | ★ 1.49 and 1.28 and 1.22 and and 1.16. 1.9 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selim, K.K.; Wu, S.; Saleeb, D.A.; Ghoneim, S.S.M. A Quad-Band RF Circuit for Enhancement of Energy Harvesting. Electronics 2021, 10, 1160. https://doi.org/10.3390/electronics10101160
Selim KK, Wu S, Saleeb DA, Ghoneim SSM. A Quad-Band RF Circuit for Enhancement of Energy Harvesting. Electronics. 2021; 10(10):1160. https://doi.org/10.3390/electronics10101160
Chicago/Turabian StyleSelim, Kyrillos K., Shaochuan Wu, Demyana A. Saleeb, and Sherif S. M. Ghoneim. 2021. "A Quad-Band RF Circuit for Enhancement of Energy Harvesting" Electronics 10, no. 10: 1160. https://doi.org/10.3390/electronics10101160
APA StyleSelim, K. K., Wu, S., Saleeb, D. A., & Ghoneim, S. S. M. (2021). A Quad-Band RF Circuit for Enhancement of Energy Harvesting. Electronics, 10(10), 1160. https://doi.org/10.3390/electronics10101160