Inhibitory Effect and Mechanism of Scutellarein on Melanogenesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Test Compound
2.3. Cell Culture
2.4. Melanin Content Assay
2.5. Cellular Viability Assay
2.6. Tyrosinase Activity Assay
2.7. Mushroom Tyrosinase Activity Assay
2.8. Western Blotting Assay
2.9. Reverse Transcription qPCR (PT-qPCR) Assay
2.10. Measurements of Hydroxyl Radical (˙OH)
2.11. Data Analysis
3. Results
3.1. Effects of Scutellarein and Baicalein on the Melanin Content of B16 Cells
3.2. Effects of Scutellarein on the Tyrosinase Activity in the Well
3.3. Effects of Scutellarein on the Viability of B16 Cells
3.4. Effect of Scutellarein and Baicalein on Mushroom Tyrosinase Activity
3.5. Effects of Scutellarein on Tyrosinase and Microphthalmia-Associated Transcription Factor (MITF) Protein Expressions
3.6. Effect of Scutellarein on Tyrosinase mRNA Expression
3.7. Hydroxyl Radical (˙OH) Generation from Scutellarein in the Presence of Tyrosinase
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Nimitphong, H.; Holick, M.F. Vitamin D status and sun exposure in southeast Asia. Dermato-Endocrinology 2013, 5, 34–37. [Google Scholar] [CrossRef] [Green Version]
- Li, E.P.H.; Min, H.J.; Belk, R.W. Skin Lightening and Beauty in Four Asian Cultures. In NA-Adv. in Consumer Research; Lee, A.Y., Soman, D., Eds.; Association for Consumer Research: Duluth, MN, USA, 2008; Volume 35, pp. 444–449. [Google Scholar]
- Fuji-Keizai. Kinouseikeshouhin Marketing Youran 2019–2020 (Functional Cosmetics Marketing Handbook 2019–2020); Fuji-Keizai: Tokyo, Japan, 2019; pp. 64–80. (In Japanese) [Google Scholar]
- Homepage of Kanebo Cosmetics, Inc. The Number of Checks of the White spots’ Condition, and Recovery, a Reconciliation Situation/the Number of Object Recall. Available online: https://www.kanebo-cosmetics.jp/information/correspondence/data_2016.html (accessed on 12 February 2021). (In Japanese).
- Maeda, K.; Fukuda, M. Arbutin: Mechanism of its depigmenting action in human melanocyte culture. J. Pharmacol. Exp. Ther. 1996, 276, 765–769. [Google Scholar]
- Maeda, K.; Naganuma, M. Topical trans-4-aminomethylcyclohexanecarboxylic acid prevents ultraviolet radiation-induced pigmentation. J. Photochem. Photobiol. B 1998, 47, 136–141. [Google Scholar] [CrossRef]
- Maeda, K.; Inoue, Y.; Nishikawa, H.; Miki, S.; Urushibata, O.; Miki, T.; Hatao, M. Involvement of melanin monomers in the skin persistent UVA-pigmentation and effectiveness of vitamin C ethyl on UVA-pigmentation. J. Jpn. Cosmet. Sci. Soc. 2003, 27, 257–268. (In Japanese) [Google Scholar]
- Kim, D.S.; Kim, S.Y.; Park, S.H.; Choi, Y.G.; Kwon, S.B.; Kim, M.K.; Na, J.I.; Youn, S.W.; Park, K.C. Inhibitory effects of 4-n-butylresorcinol on tyrosinase activity and melanin synthesis. Biol. Pharm. Bull. 2005, 28, 2216–2219. [Google Scholar] [CrossRef] [Green Version]
- Maeda, K. Advances in development of skin whitening agents. Fragr. J. 2008, 36, 65–67. (In Japanese) [Google Scholar]
- Gu, L.; Zeng, H.; Takahashi, T.; Maeda, K. In vitro methods for predicting chemical leukoderma caused by quasi-drug cosmetics. Cosmetics 2017, 4, 31. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, M.; Ohtsuji, H.; Miyahara, S. Two cases of leucoderma, presumably due to nonyl or octylphenol in synthetic detergents. Ind. Health (Kawasaki) 1970, 8, 192–196. [Google Scholar] [CrossRef]
- Xu, P.; Su, S.; Tan, C.; Lai, R.-S.; Min, Z.-S. Effects of aqueous extracts of Ecliptae herba, Polygoni multiflori radix praeparata and Rehmanniae radix praeparata on melanogenesis and the migration of human melanocytes. J. Ethnopharmacol. 2017, 195, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Lv, N.; Koo, J.-H.; Yoon, H.-Y.; Yu, J.; Kim, K.-A.; Choi, I.-W.; Kwon, K.-B.; Kwon, K.-S.; Kim, H.-U.; Park, J.-W.; et al. Effect of Angelica gigas extract on melanogenesis in B16 melanoma cells. Int. J. Mol. Med. 2007, 20, 763–767. [Google Scholar] [PubMed] [Green Version]
- Choi, M.Y.; Song, H.S.; Hur, H.S.; Sim, S.S. Whitening activity of luteolin related to the inhibition of cAMP pathway in α-MSH-stimulated B16 melanoma cells. Arch. Pharm. Res. 2008, 31, 1166–1171. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.N.; Downey, F.; Ng, C.K.Y. Comparative analysis of bioactive phytochemicalsfrom Scutellaria baicalensis, Scutellaria lateriflora, Scutellariaracemosa, Scutellaria tomentosa and Scutellaria wrightii by LC-DAD-MS. Metabolomics 2011, 7, 446–453. [Google Scholar] [CrossRef]
- Han, J.; Ye, M.; Xu, M.; Sun, J.; Wang, B.; Guo, D. Characterization of flavonoids in the traditional Chinese herbal medicine-Huangqin by liquid chromatography coupled with electrospray ionization mass spectrometry. J. Chromatogr. B 2007, 848, 355–362. [Google Scholar] [CrossRef]
- Sadasivam, K.; Kumaresan, R. A comparative DFT study on the antioxidant activity of apigenin and scutellarein flavonoid compounds. Mol. Phys. 2011, 109, 839–852. [Google Scholar] [CrossRef]
- Sung, N.Y.; Kim, M.-Y.; Cho, J.Y. Scutellarein reduces inflammatory responses by inhibiting Src kinase activity. Korean J. Physiol. Pharmacol. 2015, 19, 441–449. [Google Scholar] [CrossRef] [Green Version]
- Hamada, H.; Hiramatsu, M.; Edamatsu, R.; Mori, A. Free radical scavenging action of baicalein. Arch. Biochem. Biophys. 1993, 306, 261–266. [Google Scholar] [CrossRef]
- Hong, S.J.; Kim, K.J. Scutellaria baicalensis Georgi (SBG) inhibits melanin synthesis in mouse B16 melanoma cells. J. Korean Orient. Med. Ophthalmol. Otolaryngol. Dermatol. 2009, 22, 104–117. [Google Scholar]
- Maeda, K. Large melanosome complexis increased in keratinocytes of solar lentigo. Cosmetics 2017, 4, 49. [Google Scholar]
- Brenner, M.; Hearing, V.J. The protective role of melanin against UV damage in human skin. Photochem. Photobiol. 2008, 84, 539–549. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.Y.; Fisher, D.E. Melanocyte biology and skin pigmentation. Nature 2007, 445, 843–850. [Google Scholar] [CrossRef]
- Makpol, S.; Jam, F.A.; Rahim, N.A.; Khor, S.C.; Ismail, Z.; Yusof, Y.A.M.; Wan Ngah, W.Z. Comparable down-regulation of TYR, TYRP1 and TYRP2 genes and inhibition of melanogenesis by tyrostat, tocotrienol-rich fraction and tocopherol in human skin melanocytes improves skin pigmentation. Clin. Ter. 2014, 165, 39–45. [Google Scholar]
- D’Mello, S.; Finlay, G.J.; Baguley, B.C.; Askarian, M.E. Signaling pathways in melanogenesis. Int. J. Mol. Sci. 2016, 17, 1144. [Google Scholar]
- Stanojević, M.R.; Stanojević, Z.; Jovanović, D.L. Ultraviolet radiation and melanogenesis. Arch. Oncol. 2004, 12, 203–205. [Google Scholar] [CrossRef]
- Smit, N.; Vicanova, J.; Pavel, S. The hunt for natural skin whitening agents. Int. J. Mol. Sci. 2009, 10, 5326–5349. [Google Scholar] [CrossRef] [PubMed]
- Nisticò, S.P.; Tolone, M.; Zingoni, T.; Tamburi, F.; Scali, E.; Bennardo, L.; Cannarozzo, G. A new 675 nm laser device in the treatment of melasma:results of a prospective observational study. Photobiomod. Photomed. Laser Surg. 2020, 38, 560–564. [Google Scholar] [CrossRef]
- Li, J.; Tian, C.; Xia, Y.; Mutanda, I.; Wang, K.; Wang, Y. Production of plant-specific flavones baicalein and scutellarein in an engineered E. coli from available phenylalanine and tyrosine. Metab. Eng. 2019, 52, 124–133. [Google Scholar] [PubMed]
- Shi, X.; Chen, G.; Liu, X.; Qiu, Y.; Yang, S.; Zhang, Y.; Fang, X.; Zhang, C.; Liu, X. Scutellarein inhibits cancer cell metastasis in vitro and attenuates the development of fibrosarcoma in vivo. Int. J. Mol. Med. 2015, 35, 31–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smit, N.P.; Peters, K.; Menko, W.; Westerhof, W.; Pavel, S.; Riley, P.A. Cytotoxicity of a selected series of substituted phenols towards cultured melanoma cells. Melanoma Res. 1992, 2, 295–304. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, L.; Gu, L.; Maeda, K. Inhibitory Effect and Mechanism of Scutellarein on Melanogenesis. Cosmetics 2021, 8, 15. https://doi.org/10.3390/cosmetics8010015
Dai L, Gu L, Maeda K. Inhibitory Effect and Mechanism of Scutellarein on Melanogenesis. Cosmetics. 2021; 8(1):15. https://doi.org/10.3390/cosmetics8010015
Chicago/Turabian StyleDai, Liyun, Lihao Gu, and Kazuhisa Maeda. 2021. "Inhibitory Effect and Mechanism of Scutellarein on Melanogenesis" Cosmetics 8, no. 1: 15. https://doi.org/10.3390/cosmetics8010015
APA StyleDai, L., Gu, L., & Maeda, K. (2021). Inhibitory Effect and Mechanism of Scutellarein on Melanogenesis. Cosmetics, 8(1), 15. https://doi.org/10.3390/cosmetics8010015