Would Rutin be a Feasible Strategy for Environmental-Friendly Photoprotective Samples? A Review from Stability to Skin Permeability and Efficacy in Sunscreen Systems
Abstract
:1. Introduction
2. Physicochemical Stability of Cosmetic Preparations Containing Rutin
- (i)
- Extrinsic factors—external conditions to which cosmetic products are exposed, such as temperature, light, oxygen, humidity, packaging materials, microorganisms, and movement, among others;
- (ii)
3. Cutaneous Permeability of Rutin: Relevance to Cosmetology and Photoprotection
4. Rutin and Sunscreen Systems: In Vitro and In Vivo Efficacy Assessment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goyal, J.; Verma, P.K. An Overview of Biosynthetic Pathway and Therapeutic Potential of Rutin. Mini-Rev. Med. Chem. 2023, 23, 1451–1460. [Google Scholar] [CrossRef]
- Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid Antioxidants: Chemistry, Metabolism and Structure-Activity Relationships. J. Nutr. Biochem. 2002, 13, 572–584. [Google Scholar] [CrossRef] [PubMed]
- Hoang, H.T.; Moon, J.Y.; Lee, Y.C. Natural Antioxidants from Plant Extracts in Skincare Cosmetics: Recent Applications, Challenges and Perspectives. Cosmetics 2021, 8, 106. [Google Scholar] [CrossRef]
- Čižmárová, B.; Hubková, B.; Tomečková, V.; Birková, A. Flavonoids as Promising Natural Compounds in the Prevention and Treatment of Selected Skin Diseases. Int. J. Mol. Sci. 2023, 24, 6324. [Google Scholar] [CrossRef] [PubMed]
- Torres-Contreras, A.M.; Garcia-Baeza, A.; Vidal-Limon, H.R.; Balderas-Renteria, I.; Ramírez-Cabrera, M.A.; Ramirez-Estrada, K. Plant Secondary Metabolites against Skin Photodamage: Mexican Plants, a Potential Source of UV-Radiation Protectant Molecules. Plants 2022, 11, 220. [Google Scholar] [CrossRef]
- Tobar-Delgado, E.; Mejía-España, D.; Osorio-Mora, O.; Serna-Cock, L. Rutin: Family Farming Products’ Extraction Sources, Industrial Applications and Current Trends in Biological Activity Protection. Molecules 2023, 28, 5864. [Google Scholar] [CrossRef] [PubMed]
- Frutos, M.J.; Rincón-Frutos, L.; Valero-Cases, E. Rutin. In Nonvitamin and Nonmineral Nutritional Supplements; Elsevier: Amsterdam, The Netherlands, 2018; pp. 111–117. [Google Scholar] [CrossRef]
- Negahdari, R.; Bohlouli, S.; Sharifi, S.; Maleki Dizaj, S.; Rahbar Saadat, Y.; Khezri, K.; Jafari, S.; Ahmadian, E.; Gorbani Jahandizi, N.; Raeesi, S. Therapeutic Benefits of Rutin and Its Nanoformulations. Phytother. Res. 2021, 35, 1719–1738. [Google Scholar] [CrossRef] [PubMed]
- Kola, A.; Dudek, D.; Valensin, D. Metal Complexation Mechanisms of Polyphenols Associated to Alzheimer’s Disease. Curr. Med. Chem. 2021, 28, 7278–7294. [Google Scholar] [CrossRef]
- Noon, J.; Mills, T.B.; Norton, I.T. The Use of Natural Antioxidants to Combat Lipid Oxidation in O/W Emulsions. J. Food Eng. 2020, 281, 110006. [Google Scholar] [CrossRef]
- De Araújo, J.I.R.; de Oliveira, J.H.P.; da Silva, J.W.V.; da Silva, D.T.C.; de Soares, M.F.L.R.; Soares-Sobrinho, J.L. Métodos Analíticos para Avaliação da Estabilidade de Rutina e Análise da Formação de Seus Produtos de Degradação: Uma Revisão. Res. Soc. Dev. 2022, 11, e399111234657. [Google Scholar] [CrossRef]
- Pinzaru, I.; Tanase, A.; Enatescu, V.; Coricovac, D.; Bociort, F.; Marcovici, I.; Watz, C.; Vlaia, L.; Soica, C.; Dehelean, C. Proniosomal Gel for Topical Delivery of Rutin: Preparation, Physicochemical Characterization and in Vitro Toxicological Profile Using 3d Reconstructed Human Epidermis Tissue and 2d Cells. Antioxidants 2021, 10, 85. [Google Scholar] [CrossRef]
- Sathiya Deepika, M.; Thangam, R.; Sakthidhasan, P.; Arun, S.; Sivasubramanian, S.; Thirumurugan, R. Combined Effect of a Natural Flavonoid Rutin from Citrus Sinensis and Conventional Antibiotic Gentamicin on Pseudomonas Aeruginosa Biofilm Formation. Food Control 2018, 90, 282–294. [Google Scholar] [CrossRef]
- Velasco, M.V.R.; Balogh, T.S.; Pedriali, C.A.; Sarruf, F.D.; Pinto, C.A.S.O.; Kaneko, T.M.; Baby, A.R. Rutin Association with Ethylhexyl Methoxycinnamate and Benzophenone-3: In Vitro Evaluation of the Photoprotection Effectiveness by Reflectance Spectrophotometry. Lat. Am. J. Pharm. 2008, 27, 23–27. [Google Scholar]
- Rashidinejad, A.; Jameson, G.B.; Singh, H. The Effect of PH and Sodium Caseinate on the Aqueous Solubility, Stability, and Crystallinity of Rutin towards Concentrated Colloidally Stable Particles for the Incorporation into Functional Foods. Molecules 2022, 27, 534. [Google Scholar] [CrossRef]
- Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef]
- Gullón, B.; Lú-Chau, T.A.; Moreira, M.T.; Lema, J.M.; Eibes, G. Rutin: A Review on Extraction, Identification and Purification Methods, Biological Activities and Approaches to Enhance Its Bioavailability. Trends Food Sci. Technol. 2017, 67, 220–235. [Google Scholar] [CrossRef]
- Chuang, S.Y.; Lin, Y.K.; Lin, C.F.; Wang, P.W.; Chen, E.L.; Fang, J.Y. Elucidating the Skin Delivery of Aglycone and Glycoside Flavonoids: How the Structures Affect Cutaneous Absorption. Nutrients 2017, 9, 1304. [Google Scholar] [CrossRef]
- Lin, C.F.; Leu, Y.L.; Al-Suwayeh, S.A.; Ku, M.C.; Hwang, T.L.; Fang, J.Y. Anti-Inflammatory Activity and Percutaneous Absorption of Quercetin and Its Polymethoxylated Compound and Glycosides: The Relationships to Chemical Structures. Eur. J. Pharm. Sci. 2012, 47, 857–864. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, J.; Yang, Z.; Xiong, L.; Li, L.; Gu, Z.; Li, Y. Polyphenolic Sunscreens for Photoprotection. Green Chem. 2022, 24, 3605–3622. [Google Scholar] [CrossRef]
- Vijayakumar, R.; Abd Gani, S.S.; Zaidan, U.H.; Halmi, M.I.E.; Karunakaran, T.; Hamdan, M.R. Exploring the Potential Use of Hylocereus Polyrhizus Peels as a Source of Cosmeceutical Sunscreen Agent for Its Antioxidant and Photoprotective Properties. Evid.-Based Complement. Altern. Med. 2020, 2020, 7520736. [Google Scholar] [CrossRef]
- Franco, J.G.; Cefali, L.C.; Ataide, J.A.; Santini, A.; Souto, E.B.; Mazzola, P.G. Effect of Nanoencapsulation of Blueberry (Vaccinium myrtillus): A Green Source of Flavonoids with Antioxidant and Photoprotective Properties. Sustain. Chem. Pharm. 2021, 23, 100515. [Google Scholar] [CrossRef]
- Cândido, T.M.; De Oliveira, C.A.; Ariede, M.B.; Velasco, M.V.R.; Rosado, C.; Baby, A.R. Safety and Antioxidant Efficacy Profiles of Rutin-Loaded Ethosomes for Topical Application. Aaps Pharmscitech 2018, 19, 1773–1780. [Google Scholar] [CrossRef] [PubMed]
- Chai, J.; Chen, X.; Jin, C.; Chai, F.; Tian, M. Selective Enrichment of Rutin in Sunscreen by Boronate Affinity Molecularly Imprinted Polymer Prior to Determination by High Performance Liquid Chromatography. Biochem. Eng. J. 2023, 191, 108811. [Google Scholar] [CrossRef]
- Nunes, A.R.; Vieira, Í.G.P.; Queiroz, D.B.; Leal, A.L.A.B.; Maia Morais, S.; Muniz, D.F.; Calixto-Junior, J.T.; Coutinho, H.D.M. Use of Flavonoids and Cinnamates, the Main Photoprotectors with Natural Origin. Adv. Pharmacol. Sci. 2018, 2018, 5341487. [Google Scholar] [CrossRef] [PubMed]
- Prasanth, B.; Soman, A.; Johnson, J.; Narayanan, P.S.; John, A.P. Plants and phytoconstituents having sunscreen activity. World J. Curr. Med. Pharm. Res. 2020, 2, 14–20. [Google Scholar] [CrossRef]
- Baldisserotto, A.; Buso, P.; Radice, M.; Dissette, V.; Lampronti, I.; Gambari, R.; Manfredini, S.; Vertuani, S. Moringa Oleifera Leaf Extracts as Multifunctional Ingredients for “Natural and Organic” Sunscreens and Photoprotective Preparations. Molecules 2018, 23, 664. [Google Scholar] [CrossRef]
- Boo, Y.C. Emerging Strategies to Protect the Skin from Ultraviolet Rays Using Plant-Derived Materials. Antioxidants 2020, 9, 637. [Google Scholar] [CrossRef] [PubMed]
- Martins, R.M.; de Siqueira Martins, S.; Barbosa, G.L.F.; Fonseca, M.J.V.; Rochette, P.J.; Moulin, V.J.; de Freitas, L.A.P. Photoprotective Effect of Solid Lipid Nanoparticles of Rutin against UVB Radiation Damage on Skin Biopsies and Tissue-Engineered Skin. J. Microencapsul. 2022, 39, 668–679. [Google Scholar] [CrossRef]
- Roquete Amparo, T.; Cherem Peixoto da Silva, A.; Brandão Seibert, J.; dos Santos da Silva, D.; Martins Rebello dos Santos, V.; Melo de Abreu Vieira, P.; Célio Brandão, G.; Henrique Bianco de Souza, G.; Aloise Maneira Corrêa Santos, B. In Vitro and In Silico Investigation of the Photoprotective and Antioxidant Potential of Protium Spruceanum Leaves and Its Main Flavonoids. J. Photochem. Photobiol. A Chem. 2022, 431, 114037. [Google Scholar] [CrossRef]
- Cefali, L.C.; Ataide, J.A.; Eberlin, S.; da Silva Gonçalves, F.C.; Fernandes, A.R.; Marto, J.; Ribeiro, H.M.; Foglio, M.A.; Mazzola, P.G.; Souto, E.B. In Vitro SPF and Photostability Assays of Emulsion Containing Nanoparticles with Vegetable Extracts Rich in Flavonoids. Aaps Pharmscitech 2019, 20, 9. [Google Scholar] [CrossRef]
- Mostafa, E.S.; Maher, A.; Mostafa, D.A.; Gad, S.S.; Nawwar, M.A.M.; Swilam, N. A Unique Acylated Flavonol Glycoside from Prunus persica (L.) Var. Florida Prince: A New Solid Lipid Nanoparticle Cosmeceutical Formulation for Skincare. Antioxidants 2021, 10, 436. [Google Scholar] [CrossRef]
- Fonseca, M.; Rehman, M.; Soares, R.; Fonte, P. The Impact of Flavonoid-Loaded Nanoparticles in the UV Protection and Safety Profile of Topical Sunscreens. Biomolecules 2023, 13, 493. [Google Scholar] [CrossRef] [PubMed]
- Tomazelli, L.C.; de Assis Ramos, M.M.; Sauce, R.; Cândido, T.M.; Sarruf, F.D.; de Oliveira Pinto, C.A.S.; de Oliveira, C.A.; Rosado, C.; Velasco, M.V.R.; Baby, A.R. SPF Enhancement Provided by Rutin in a Multifunctional Sunscreen. Int. J. Pharm. 2018, 552, 401–406. [Google Scholar] [CrossRef]
- Tabolacci, E.; Tringali, G.; Nobile, V.; Duca, S.; Pizzoferrato, M.; Bottoni, P.; Clementi, M.E. Rutin Protects Fibroblasts from UVA Radiation through Stimulation of Nrf2 Pathway. Antioxidants 2023, 12, 820. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, C.A.; Dario, M.F.; Sarruf, F.D.; Mariz, I.F.A.; Velasco, M.V.R.; Rosado, C.; Baby, A.R. Safety and Efficacy Evaluation of Gelatin-Based Nanoparticles Associated with UV Filters. Colloids Surf. B Biointerfaces 2016, 140, 531–537. [Google Scholar] [CrossRef]
- Wang, Q.; Hu, C.; Zoghbi, A.; Huang, J.; Xia, Q. Oil-in-Oil-in-Water Pre-Double Emulsions Stabilized by Nonionic Surfactants and Silica Particles: A New Approach for Topical Application of Rutin. Colloids Surf. A Physicochem. Eng. Asp. 2017, 522, 399–407. [Google Scholar] [CrossRef]
- Berlier, G.; Gastaldi, L.; Sapino, S.; Miletto, I.; Bottinelli, E.; Chirio, D.; Ugazio, E. MCM-41 as a Useful Vector for Rutin Topical Formulations: Synthesis, Characterization and Testing. Int. J. Pharm. 2013, 457, 177–186. [Google Scholar] [CrossRef]
- Baldisserotto, A.; Vertuani, S.; Bino, A.; De Lucia, D.; Lampronti, I.; Milani, R.; Gambari, R.; Manfredini, S. Design, Synthesis and Biological Activity of a Novel Rutin Analogue with Improved Lipid Soluble Properties. Bioorg. Med. Chem. 2015, 23, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Soni, H.; Singhai, A.K. Formulation and Development ff Hydrogel Based System for Effective Delivery Of Rutin. Int. J. App. Pharm. 2013, 5, 5–13. [Google Scholar]
- Mishra, S.; Ranjan Mishra, S.; Soni, H. Hydrogel Containing Rutin in Wound Healing. EAS J. Pharm. Pharmacol. 2021, 3, 161–167. [Google Scholar] [CrossRef]
- Giuliano, E.; Paolino, D.; Cristiano, M.C.; Fresta, M.; Cosco, D. Rutin-Loaded Poloxamer 407-Based Hydrogels for In Situ Administration: Stability Profiles and Rheological Properties. Nanomaterials 2020, 10, 1069. [Google Scholar] [CrossRef] [PubMed]
- Sri Venkateswarlu, B.; Balasubramani, R.; Chandira, R.M.; Pethappachetty, P. Topical Application Using Non-Ionic Surfactant for Formulation and Evaluation of Flavonoid Proniosomes. Asian J. Biol. Life Sci. 2022, 11, 397–403. [Google Scholar] [CrossRef]
- Gandhi, S.V.; Nilgar, N.M.; Bhalekar, M.R. Formulation and evaluation of phytoconstituents cream for the treatment of varicose veins. World J. Pharm. Res. SJIF Impact Factor 2018, 7, 733. [Google Scholar] [CrossRef]
- Barthe, M.; Bavoux, C.; Finot, F.; Mouche, I.; Cuceu-Petrenci, C.; Forreryd, A.; Hansson, A.C.; Johansson, H.; Lemkine, G.F.; Thénot, J.P.; et al. Safety Testing of Cosmetic Products: Overview of Established Methods and New Approach Methodologies (Nams). Cosmetics 2021, 8, 50. [Google Scholar] [CrossRef]
- Zangheri, M.; Calabretta, M.M.; Calabria, D.; Fiori, J.; Guardigli, M.; Michelini, E.; Melandri, S.; Maris, A.; Mirasoli, M.; Evangelisti, L. Immunological Analytical Techniques for Cosmetics Quality Control and Process Monitoring. Processes 2021, 9, 1982. [Google Scholar] [CrossRef]
- De Argollo, G.; Camila, M.; Hiraishi, F.; Ivo, P.; Macedo, D.S.; Aparecida, C.; De Oliveira, S.; João, P.; Catarina, G. HPLC-TBARS-EVSC (High-Performance Liquid Thiobarbituric Acid Reactive Substances—Ex Vivo Stratum Corneum) Protocol: Selection of the Subjects and Approach to Present the Results. Int. J. Cosmet. Sci. 2023, 45, 647–654. [Google Scholar] [CrossRef]
- Shanbhag, S.; Nayak, A.; Narayan, R.; Nayak, U.Y. Anti-Aging and Sunscreens: Paradigm Shift in Cosmetics. Adv. Pharm. Bull. 2019, 9, 348–359. [Google Scholar] [CrossRef]
- ANVISA. Guia de Controle de Qualidade de Produtos Cosméticos: Uma Abordagem Sobre Os Ensaios Físicos e Químicos; Agência Nacional de Vigilância Sanitária: Brasilia, Brazil, 2008; ISBN 9788588233348. [Google Scholar]
- Badruddoza, A.Z.M.; Thean Yeoh, J.C.S.; Walsh, T. Assessing and Predicting Physical Stability of Emulsion-Based Topical Semisolid Products: A Review. J. Pharm. Sci. 2023, 112, 1772–1793. [Google Scholar] [CrossRef]
- Velasco, M.V.R.; Maciel, C.R.M.; Sarruf, F.D.; Pinto, C.A.S.O.; Consiglieri, V.O.; Kaneko, T.M.; Baby, A.R. Desenvolvimento e Teste Preliminar da Estabilidade de Formulaç Ões Cosméticas Acrescidas de Extrato Comercial de Trichilia catigua Adr. Juss (e) Ptychopetalum olacoides Bentham. Rev. Cienc. Farm. Basica Apl. 2008, 29, 179–194. [Google Scholar]
- Baby, A.R.; Migliato, K.F.; Maciel, C.P.M.; Zague, V.; Aparecida Sales de Oliveira Pinto, C.; Salgado, H.R.N.; Kaneko, T.M.; Velasco, M.V.R. Accelerated Chemical Stability Data of O/W Fluid Emulsions Containing the Extract of Trichilia Catigua Adr. Juss (and) Ptychopetalum olacoides Bentham. Braz. J. Pharm. Sci. 2007, 43, 405–412. [Google Scholar] [CrossRef]
- Maciel, C.P.M.; Kaneko, T.M. UV Spectrophotometric Determination of Bioflavonoids from a Semisolid Pharmaceutical Dosage Form Containing. J. AOAC Int. 2006, 89, 1532–1537. [Google Scholar] [CrossRef]
- Passos, M.L.; Saraiva, M.L.M. Detection in UV-Visible Spectrophotometry: Detectors, Detection Systems, and Detection Strategies. Measurement 2019, 135, 896–904. [Google Scholar] [CrossRef]
- Haque, S.M. Optimized Box–Behnken Experimental Design Based Response Surface Methodology and Youden’s Robustness Test to Develop and Validate Methods to Determine Nateglinide Using Kinetic Spectrophotometry. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 268, 120712. [Google Scholar] [CrossRef]
- Civan, F.; Alarcon, L.J.; Campbell, S.E. Laboratory Confirmation of New Emulsion Stability Model. J. Pet. Sci. Eng. 2004, 43, 25–34. [Google Scholar] [CrossRef]
- Kasprzak, M.M.; Erxleben, A.; Ochocki, J. Properties and Applications of Flavonoid Metal Complexes. RSC Adv. 2015, 5, 45853–45877. [Google Scholar] [CrossRef]
- Chaaban, H.; Ioannou, I.; Paris, C.; Charbonnel, C.; Ghoul, M. The Photostability of Flavanones, Flavonols and Flavones and Evolution of Their Antioxidant Activity. J. Photochem. Photobiol. A Chem. 2017, 336, 131–139. [Google Scholar] [CrossRef]
- Zagoskina, N.V.; Zubova, M.Y.; Nechaeva, T.L.; Kazantseva, V.V.; Goncharuk, E.A.; Katanskaya, V.M.; Baranova, E.N.; Aksenova, M.A. Polyphenols in Plants: Structure, Biosynthesis, Abiotic Stress Regulation, and Practical Applications (Review). Int. J. Mol. Sci. 2023, 24, 13874. [Google Scholar] [CrossRef]
- Bilia, A.R.; Bergonzi, M.C.; Morgenni, F.; Mazzi, G.; Vincieri, F.F. Evaluation of Chemical Stability of St. John’s Wort Commercial Extract and Some Preparations. Int. J. Pharm. 2001, 213, 199–208. [Google Scholar] [CrossRef]
- Banov, D.; Baby, A.R.; Del Bosco, L.M.; Kaneko, T.M.; Velasco, M.V.R. Caracterização do Extrato Seco de Ginkgo biloba L. em Formulações de Uso Tópico. Acta Farm. Bonaer. 2006, 25, 219–224. [Google Scholar]
- Nishikawa, D.O.; Zague, V.; Pinto, C.A.S.O.; Vieira, R.P.; Kaneko, T.M.; Velasco, M.V.R.; Baby, A.R. Avaliação Da Estabilidade de Máscaras Faciais Peel-off Contendo Rutina. Rev. Ciências Farm. Básica Apl. 2007, 28, 227–232. [Google Scholar]
- Valenta, C.; Nowack, E.; Bernkop-Schnürch, A. Deoxycholate-Hydrogels: Novel Drug Carrier Systems for Topical Use. Int. J. Pharm. 1999, 185, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Baby, A.R.; Haroutiounian-Filho, C.A.; Sarruf, F.D.; Tavante-Júnior, C.R.; de Pinto, C.A.S.O.; Zague, V.; Arêas, E.P.G.; Kaneko, T.M.; Velasco, M.V.R. Stability and In Vitro Penetration Study of Rutin Incorporated in a Cosmetic Emulsion through an Alternative Model Biomembrane. Braz. J. Pharm. Sci. 2008, 44, 233–248. [Google Scholar] [CrossRef]
- Baby, A.R.; Haroutiounian-Filho, C.A.; Sarruf, F.D.; Pinto, C.A.S.D.O.; Kaneko, T.M.; Velasco, M.V.R. Influence of Urea, Isopropanol, and Propylene Glycol on Rutin In Vitro Release from Cosmetic Semisolid Systems Estimated by Factorial Design. Drug Dev. Ind Pharm. 2009, 35, 272–282. [Google Scholar] [CrossRef]
- Montenegro, L.; Carbone, C.; Maniscalco, C.; Lambusta, D.; Nicolosi, G.; Ventura, C.A.; Puglisi, G. In Vitro Evaluation of Quercetin-3-O-Acyl Esters as Topical Prodrugs. Int. J. Pharm. 2007, 336, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Wadher, K.; Trivedi, S.; Rarokar, N.; Umekar, M. Development and Assessment of Rutin Loaded Transfersomes to Improve Ex Vivo Membrane Permeability and In Vitro Efficacy. Hybrid Adv. 2024, 5, 100144. [Google Scholar] [CrossRef]
- Hassan, A.S.; Soliman, G.M. Rutin Nanocrystals with Enhanced Anti-Inflammatory Activity: Preparation and Ex Vivo/In Vivo Evaluation in an Inflammatory Rat Model. Pharmaceutics 2022, 14, 2727. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Sun, R.; Huang, J.; Xia, Q. Development and Characterization of a New Non-Aqueous Self-Double-Emulsifying Drug Delivery System for Topical Application of Rutin. J. Drug Deliv. Sci. Technol. 2021, 61, 101243. [Google Scholar] [CrossRef]
- Gan, L.; Zhang, C.; Wu, F.; Li, H.; Zhang, W.P.; Zhang, Q. Microencapsulated Nanostructured Lipid Carriers as Delivery System for Rutin. Mater. Technol. 2018, 33, 357–363. [Google Scholar] [CrossRef]
- Li, J.; Ni, W.; Aisha, M.; Zhang, J.; Sun, M. A Rutin Nanocrystal Gel as an Effective Dermal Delivery System for Enhanced Anti-Photoaging Application. Drug Dev. Ind Pharm. 2021, 47, 429–439. [Google Scholar] [CrossRef]
- Alam, M.S.; Sultana, N.; Rashid, M.A.; Alhamhoom, Y.; Ali, A.; Waheed, A.; Ansari, M.S.; Aqil, M.; Mujeeb, M. Quality by Design-Optimized Glycerosome-Enabled Nanosunscreen Gel of Rutin Hydrate. Gels 2023, 9, 752. [Google Scholar] [CrossRef]
- Pyo, S.M.; Meinke, M.; Keck, C.M.; Müller, R.H. Rutin-Increased Antioxidant Activity and Skin Penetration by Nanocrystal Technology (SmartCrystals). Cosmetics 2016, 3, 9. [Google Scholar] [CrossRef]
- Aldawsari, M.F.; Alam, A.; Imran, M. Rutin-Loaded Transethosomal Gel for Topical Application: A Comprehensive Analysis of Skin Permeation and Antimicrobial Efficacy. ACS Omega 2024, 9, 27300–27311. [Google Scholar] [CrossRef] [PubMed]
- Park, S.N.; Lee, H.J.; Gu, H.A. Enhanced Skin Delivery and Characterization of Rutin-Loaded Ethosomes. Korean J. Chem. Eng. 2014, 31, 485–489. [Google Scholar] [CrossRef]
- Pelikh, O.; Stahr, P.L.; Huang, J.; Gerst, M.; Scholz, P.; Dietrich, H.; Geisel, N.; Keck, C.M. Nanocrystals for Improved Dermal Drug Delivery. Eur. J. Pharm. Biopharm. 2018, 128, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Park, S.N.; Lee, M.H.; Kim, S.J.; Yu, E.R. Preparation of Quercetin and Rutin-Loaded Ceramide Liposomes and Drug-Releasing Effect in Liposome-in-Hydrogel Complex System. Biochem. Biophys. Res. Commun. 2013, 435, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Das, M.K.; Kalita, B. Design and Evaluation of Phyto-Phospholipid Complexes (Phytosomes) of Rutin for Transdermal Application. J. Appl. Pharm. Sci. 2014, 4, 51–57. [Google Scholar] [CrossRef]
- Júlio, A.; Caparica, R.; Costa Lima, S.A.; Fernandes, A.S.; Rosado, C.; Prazeres, D.M.F.; Reis, S.; De Almeida, T.S.; Fonte, P. Ionic Liquid-Polymer Nanoparticle Hybrid Systems as New Tools to Deliver Poorly Soluble Drugs. Nanomaterials 2019, 9, 1148. [Google Scholar] [CrossRef] [PubMed]
- Kajbafvala, A.; Salabat, A. Microemulsion and Microemulsion Gel Formulation for Transdermal Delivery of Rutin: Optimization, In-Vitro/Ex-Vivo Evaluation and SPF Determination. J. Dispers. Sci. Technol. 2022, 43, 1848–1857. [Google Scholar] [CrossRef]
- Sionkowska, A.; Lewandowska, K.; Kurzawa, M. Chitosan-Based Films Containing Rutin for Potential Cosmetic Applications. Polymers 2023, 15, 3224. [Google Scholar] [CrossRef]
- Scholz, P.; Keck, C.M. Flavonoid Nanocrystals Produced by ARTcrystal®-Technology. Int. J. Pharm. 2015, 482, 27–37. [Google Scholar] [CrossRef]
- Casagrande, R.; Georgetti, S.R.; Verri, W.A., Jr.; Borin, M.F.; Lopez, R.F.; Fonseca, M.J. In Vitro Evaluation of Quercetin Cutaneous Absorption from Topical Formulations and Its Functional Stability by Antioxidant Activity. Int. J. Pharm. 2007, 328, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Ghazi, S. Do the Polyphenolic Compounds from Natural Products Can Protect the Skin from Ultraviolet Rays? Results Chem. 2022, 4, 100428. [Google Scholar] [CrossRef]
- Li, L.; Chong, L.; Huang, T.; Ma, Y.; Li, Y.; Ding, H. Natural Products and Extracts from Plants as Natural UV Filters for Sunscreens: A Review. Anim. Model. Exp. Med. 2023, 6, 183–195. [Google Scholar] [CrossRef]
- Fatharani, R.M.; Fitrian, U.A.; Ishak, S.S.O.; Adlia, A. Sun Protection Factor and Tyrosinase Inhibitory Activity of Several Plant Secondary Metabolites. Curr. Res. J. Biol. Sci. 2023, 5, 315–319. [Google Scholar] [CrossRef]
- Pinzaru, I.; Chioibas, R.; Marcovici, I.; Coricovac, D.; Susan, R.; Predut, D.; Georgescu, D.; Dehelean, C. Rutin Exerts Cytotoxic and Senescence-Inducing Properties in Human Melanoma Cells. Toxics 2021, 9, 226. [Google Scholar] [CrossRef]
- De Oliveira, C.A.; Da Peres, D.; Rugno, C.M.; Kojima, M.; De Oliveira Pinto, C.A.S.; Consiglieri, V.O.; Kaneko, T.M.; Rosado, C.; Mota, J.; Velasco, M.V.R.; et al. Functional Photostability and Cutaneous Compatibility of Bioactive UVA Sun Care Products. J. Photochem. Photobiol. B 2015, 148, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Pasuch Gluzezak, A.J.; Dos Santos, J.L.; Maria-Engler, S.S.; Gaspar, L.R. Evaluation of the Photoprotective and Antioxidant Potential of an Avobenzone Derivative. Front. Physiol. 2024, 15, 1347414. [Google Scholar] [CrossRef] [PubMed]
- Krutmann, J.; Schalka, S.; Watson, R.E.B.; Wei, L.; Morita, A. Daily Photoprotection to Prevent Photoaging. Photodermatol. Photoimmunol. Photomed. 2021, 37, 482–489. [Google Scholar] [CrossRef]
- Flament, F.; Mercurio, D.G.; Catalan, E.; Bouhadanna, E.; Delaunay, C.; Miranda, D.F.; Passeron, T. Impact on Facial Skin Aging Signs of a 1-Year Standardized Photoprotection over a Classical Skin Care Routine in Skin Phototypes II–VI Individuals: A Prospective Randomized Trial. J. Eur. Acad. Dermatol. Venereol. 2023, 37, 2090–2097. [Google Scholar] [CrossRef]
- Lan, C.C.E.; Hung, Y.T.; Fang, A.H.; Ching-Shuang, W. Effects of Irradiance on UVA-Induced Skin Aging. J. Dermatol. Sci. 2019, 94, 220–228. [Google Scholar] [CrossRef]
- Bernerd, F.; Passeron, T.; Castiel, I.; Marionnet, C. The Damaging Effects of Long UVA (UVA1) Rays: A Major Challenge to Preserve Skin Health and Integrity. Int. J. Mol. Sci. 2022, 23, 8243. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Yamauchi, R.; Tsuji, T.; Krutmann, J.; Morita, A. The Expression of Matrix Metalloproteinase-1 MRNA Induced by Ultraviolet A1 (340–400 Nm) Is Phototherapy Relevant to the Glutathione (GSH) Content in Skin Fibroblasts of Systemic Sclerosis. J. Dermatol. 2003, 30, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Rognoni, E.; Goss, G.; Hiratsuka, T.; Sipilä, K.H.; Kirk, T.; Kober, K.I.; Lui, P.P.; Tsang, V.S.K.; Hawkshaw, N.J.; Pilkington, S.M.; et al. Role of Distinct Fibroblast Lineages and Immune Cells in Dermal Repair Following UV Radiation Induced Tissue Damage. Elife 2021, 10, e71052. [Google Scholar] [CrossRef] [PubMed]
- Gęgotek, A.; Domingues, P.; Skrzydlewska, E. Proteins Involved in the Antioxidant and Inflammatory Response in Rutin-Treated Human Skin Fibroblasts Exposed to UVA or UVB Irradiation. J. Dermatol. Sci. 2018, 90, 241–252. [Google Scholar] [CrossRef] [PubMed]
- Baby, A.R.; Balogh, T.S.; Pedriali, C.A.; Kaneko, T.M.; Velasco, M.V.R. Uva I-Protection Effectiveness of Bioactive Compound and Organic Uv Filters: An In Vitro Assessment. Quim. Nova 2009, 32, 1321–1323. [Google Scholar] [CrossRef]
- Food and Drug Administration, HHS. Labeling and Effectiveness Testing; Sunscreen Drug Products for over-the-Conter Human Use. Final Rule. Fed. Regist. 2011, 76, 46. [Google Scholar]
- El-Boury, S.; Couteau, C.; Boulande, L.; Paparis, E.; Coiffard, L.J.M. Effect of the Combination of Organic and Inorganic Filters on the Sun Protection Factor (SPF) Determined by In Vitro Method. Int. J. Pharm. 2007, 340, 1–5. [Google Scholar] [CrossRef]
- Couteau, C.; Faure, A.; Fortin, J.; Paparis, E.; Coiffard, L.J.M. Study of the Photostability of 18 Sunscreens in Creams by Measuring the SPF In Vitro. J. Pharm. Biomed. Anal. 2007, 44, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Nadia, M.A.; Zulkarnain, A.K.; Sulaiman, T.N.S. Determination of Photoprotective Capacity of Topical Gel Formulations Containing Bioactive Compound Rutin and Evaluation of Physicochemical Stability. Trop. J. Nat. Prod. Res. 2023, 7, 3923–3931. [Google Scholar] [CrossRef]
- Ferreira, S.M.; Gomes, S.M.; Santos, L. A Novel Approach in Skin Care: By-Product Extracts as Natural UV Filters and an Alternative to Synthetic Ones. Molecules 2023, 28, 2037. [Google Scholar] [CrossRef] [PubMed]
- Valavanidis, A.; Vlachogianni, T. Plant Polyphenols: Recent Advances in Epidemiological Research and Other Studies on Cancer Prevention. Stud. Nat. Prod. Chem. 2013, 39, 269–295. [Google Scholar] [CrossRef]
- Her, Y.; Lee, T.K.; Kim, J.D.; Kim, B.; Sim, H.; Lee, J.C.; Ahn, J.H.; Park, J.H.; Lee, J.W.; Hong, J.; et al. Topical Application of Aronia Melanocarpa Extract Rich in Chlorogenic Acid and Rutin Reduces UVB-Induced Skin Damage via Attenuating Collagen Disruption in Mice. Molecules 2020, 25, 4577. [Google Scholar] [CrossRef] [PubMed]
- Velasco, M.V.R.; Sarruf, F.D.; Salgado-Santos, I.M.N.; Haroutiounian-Filho, C.A.; Kaneko, T.M.; Baby, A.R. Broad Spectrum Bioactive Sunscreens. Int. J. Pharm. 2008, 363, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Monsalve-bustamante, Y.A.; Puertas-mejia, M.A.; Mejia-giraldo, J.C. Comparison of the Photoprotective Effect between Hydrolyzed and Aglycones Flavonoids as Sunscreen: A Systematic Review. J. Appl. Pharm. Sci. 2020, 10, 116–123. [Google Scholar] [CrossRef]
- Opriş, O.; Soran, M.L.; Lung, I.; Stegarescu, A.; Guţoiu, S.; Podea, R.; Podea, P. Optimization of Extraction Conditions of Polyphenols, Antioxidant Capacity and Sun Protection Factor from Prunus Spinosa Fruits. Application in Sunscreen Formulation. J. Iran. Chem. Soc. 2021, 18, 2625–2636. [Google Scholar] [CrossRef]
- Ng, S.Y.; Eh Suk, V.R.; Gew, L.T. Plant Polyphenols as Green Sunscreen Ingredients: A Systematic Review. J. Cosmet. Dermatol. 2022, 21, 5409–5444. [Google Scholar] [CrossRef]
- He, H.; Li, A.; Li, S.; Tang, J.; Li, L.; Xiong, L. Natural Components in Sunscreens: Topical Formulations with Sun Protection Factor (SPF). Biomed. Pharmacother. 2021, 134, 111161. [Google Scholar] [CrossRef]
- Dondi, D.; Albini, A.; Serpone, N. Interactions between Different Solar UVB/UVA Filters Contained in Commercial Suncreams and Consequent Loss of UV Protection. Photochem. Photobiol. Sci. 2006, 5, 835–843. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, C.A.; Peres, D.D.A.; Graziola, F.; Chacra, N.A.B.; De Araújo, G.L.B.; Flórido, A.C.; Mota, J.; Rosado, C.; Velasco, M.V.R.; Rodrigues, L.M.; et al. Cutaneous Biocompatible Rutin-Loaded Gelatin-Based Nanoparticles Increase the SPF of the Association of UVA and UVB Filters. Eur. J. Pharm. Sci. 2016, 81, 1–9. [Google Scholar] [CrossRef]
- Chavda, V.P.; Acharya, D.; Hala, V.; Daware, S.; Vora, L.K. Sunscreens: A Comprehensive Review with the Application of Nanotechnology. J. Drug Deliv. Sci. Technol. 2023, 86, 104720. [Google Scholar] [CrossRef]
- Kamel, R.; Mostafa, D.M. Rutin Nanostructured Lipid Cosmeceutical Preparation with Sun Protective Potential. J. Photochem. Photobiol. B 2015, 153, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Ahmad Kuthi, N.; Basar, N.; Chandren, S. Nanonutrition- and Nanoparticle-Based Ultraviolet Rays Protection of Skin. In Advances in Nanotechnology-Based Drug Delivery Systems; Elsevier: Amsterdam, The Netherlands, 2022; pp. 227–280. [Google Scholar] [CrossRef]
- Kumar, N.; Jose, J. Current Developments in the Nanomediated Delivery of Photoprotective Phytochemicals. Environ. Sci. Pollut. Res. 2020, 27, 38446–38471. [Google Scholar] [CrossRef] [PubMed]
- Gonçalo das Neves e Silva, E.; Ferreira Barbosa, G.L.; Alves Confessor, M.V.; Bacalhau de Sousa, W.J.; Lia Fook, M.V.; Siqueira-Júnior, J.P.; Pedro de Freitas, L.A.; Martins, R.M. Artemia Salina Leach in Photoprotection: A New Model to Evaluate the Potential of Nanoparticles for Topical Application. J. Drug Deliv. Sci. Technol. 2023, 90, 105164. [Google Scholar] [CrossRef]
Molecular structure | C27H30O16 [16] |
Molecular weight | 610.518 g/mol [17] |
LogP | 0.76 ± 0.22; 0.21 ± 0.10 [18] |
Melting point | 187 °C [19] |
Nanostructure | Method | References |
---|---|---|
Transethosomal | In vitro skin permeation in diffusion cells using albino rat skin | [74] |
Ethosome | In vitro skin permeation in diffusion cells using albino rat skin and ex vivo skin penetration in human skin by tape stripping | [23,75] |
Nanocrystal | Ex vivo skin permeation by tape stripping on porcine skin ears | [73,76] |
Liposome-in-hydrogel complex system | In vitro skin permeation using rat skin | [77] |
Gelatin nanocapsules | In vitro skin permeation in diffusion cells using porcine ears skin | [36] |
Chitosan/tripolyphosphate nanoparticles | In vitro skin permeation in diffusion cells using porcine skin ears | [31] |
Phytosomes | In vivo skin permeation in diffusion cells using rat skin | [78] |
Ionic liquid-polymer nanoparticle | In vitro skin permeation in diffusion cells using polydimethylsiloxane membrane | [79] |
Transfersomes | In vitro skin permeation in diffusion cells using rat skin | [67] |
Proniosome | Diffusion cells using egg membrane | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ariede, M.B.; Gomez Junior, W.A.; Cândido, T.M.; de Aguiar, M.M.G.B.; Rosado, C.; Rangel-Yagui, C.d.O.; Pessoa, F.V.L.S.; Velasco, M.V.R.; Baby, A.R. Would Rutin be a Feasible Strategy for Environmental-Friendly Photoprotective Samples? A Review from Stability to Skin Permeability and Efficacy in Sunscreen Systems. Cosmetics 2024, 11, 141. https://doi.org/10.3390/cosmetics11040141
Ariede MB, Gomez Junior WA, Cândido TM, de Aguiar MMGB, Rosado C, Rangel-Yagui CdO, Pessoa FVLS, Velasco MVR, Baby AR. Would Rutin be a Feasible Strategy for Environmental-Friendly Photoprotective Samples? A Review from Stability to Skin Permeability and Efficacy in Sunscreen Systems. Cosmetics. 2024; 11(4):141. https://doi.org/10.3390/cosmetics11040141
Chicago/Turabian StyleAriede, Maíra Bueno, Wallace Androm Gomez Junior, Thalita Marcílio Cândido, Michelle Maria Gonçalves Barão de Aguiar, Catarina Rosado, Carlota de Oliveira Rangel-Yagui, Fabiana Vieira Lima Solino Pessoa, Maria Valéria Robles Velasco, and André Rolim Baby. 2024. "Would Rutin be a Feasible Strategy for Environmental-Friendly Photoprotective Samples? A Review from Stability to Skin Permeability and Efficacy in Sunscreen Systems" Cosmetics 11, no. 4: 141. https://doi.org/10.3390/cosmetics11040141
APA StyleAriede, M. B., Gomez Junior, W. A., Cândido, T. M., de Aguiar, M. M. G. B., Rosado, C., Rangel-Yagui, C. d. O., Pessoa, F. V. L. S., Velasco, M. V. R., & Baby, A. R. (2024). Would Rutin be a Feasible Strategy for Environmental-Friendly Photoprotective Samples? A Review from Stability to Skin Permeability and Efficacy in Sunscreen Systems. Cosmetics, 11(4), 141. https://doi.org/10.3390/cosmetics11040141