Trampling Intensity and Vegetation Response and Recovery according to Altitude: An Experimental Study from the Himalayan Miyar Valley
Abstract
:1. Introduction
2. Study Area and Research Methodology
3. Results
3.1. Variation in Vegetation Response to Trampling
3.2. Regression Models of Vegetation Response to Different Amounts of Trampling
3.3. Changes in Vegetation Cover Due to Trampling at Various Altitudes
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Meinecke, E.P. A Report on the Effect of Excessive Tourist Travel on the California Redwood Parks; California State Printing Office: Sacramento, CA, USA, 1928.
- Bates, G.H. The vegetation of footpaths, sidewalks, cart-tracks and gateways. J. Ecol. 1935, 23, 470–487. [Google Scholar] [CrossRef]
- Speight, M.C. Outdoor Recreation and Its Ecological Effects: A Bibliography and Review; University College: London, UK, 1973; Volume 4. [Google Scholar]
- Dale, D.; Weaver, T. Trampling effects on vegetation of the trail corridors of north Rocky Mountain forests. J. Appl. Ecol. 1974, 11, 767–772. [Google Scholar] [CrossRef]
- Cole, D.N. Minimizing conflict between recreation and nature conservation. In Ecology of Greenways: Design and Function of Linear Conservation Areas; Smith, D.S., Hellmund, P.C., Eds.; University of Minnesota Press: Minneapolis, MN, USA, 1993; pp. 105–122. [Google Scholar]
- Komárková, V. Alpine Vegetation of the Indian Peaks Area (Front Range, Colorado Rocky Mountains); Flora Veg. Mundi: Vaduz, Liechtenstein, 1979; pp. 1–591. [Google Scholar]
- Zachar, D. Soil Erosion; Elsevier: New York, NY, USA, 2011. [Google Scholar]
- Tomczyk, A.M.; Ewertowski, M. Quantifying short-term surface changes on recreational trails: The use of topographic surveys and ‘digital elevation models of differences’ (DODs). Geomorphology 2013, 183, 58–72. [Google Scholar] [CrossRef] [Green Version]
- Tomczyk, A.M.; Ewertowski, M. Planning of recreational trails in protected areas: Application of regression tree analysis and geographic information systems. Appl. Geogr. 2013, 40, 129–139. [Google Scholar] [CrossRef]
- Fidelus, J. Slope transformations within tourist footpaths in the northern and southern parts of the Western Tatra Mountains (Poland, Slovakia). Z. Geomorphol. Suppl. Issues 2016, 60, 139–162. [Google Scholar] [CrossRef]
- Klug, B.; Scharfetter-Lehrl, G.; Scharfetter, E. Effects of trampling on vegetation above the timberline in the eastern Alps, Austria. Arct. Antarct. Alp. Res. 2002, 34, 377–388. [Google Scholar] [CrossRef]
- Marion, J.L.; Olive, N. Assessing and Understanding Trail Degradation: Results from Big South Fork National River and Recreational Area. US Geological Survey. 2006. Available online: www.pwrc.usgs.gov (accessed on 10 April 2020).
- Hill, R.; Pickering, C.M. Differences in resistance of three subtropical vegetation types to experimental trampling. J. Environ. Manag. 2009, 90, 1305–1312. [Google Scholar] [CrossRef] [Green Version]
- Apollo, M.; Andreychouk, V. Mountaineering and the natural environment in developing countries: An insight to a comprehensive approach. Int. J. Environ. Stud. 2020, 1–12. [Google Scholar] [CrossRef]
- Mu, Y.; Nepal, S. High mountain adventure tourism: Trekkers’ perceptions of risk and death in Mt. Everest Region, Nepal. Asia Pac. J. Tour. Res. 2015, 21, 500–511. [Google Scholar] [CrossRef]
- Apollo, M. The true accessibility of mountaineering: The case of the High Himalaya. J. Outdoor Recreat. Tour. 2017, 17, 29–43. [Google Scholar] [CrossRef]
- Apollo, M.; Andreychouk, V.; Moolio, M.; Wengel, Y.; Myga-Piątek, U. Does the altitude of habitat influence residents’ attitudes to guests? A new dimension in the residents’ attitudes to tourism. J. Outdoor Recreat. Tour. 2020. [Google Scholar] [CrossRef]
- Nepal, S.K. Tourism in protected areas: The Nepalese Himalaya. Ann. Tour. Res. 2000, 27, 661–681. [Google Scholar] [CrossRef]
- Marek, A.; Wieczorek, M. Tourist traffic in the Aconcagua Massif area. Quaest. Geogr. 2015, 34, 65–76. [Google Scholar] [CrossRef] [Green Version]
- Barros, A.; Monz, C.; Pickering, C. Is tourism damaging ecosystems in the Andes? Current knowledge and an agenda for future research. AMBIO 2015, 44, 82–98. [Google Scholar] [CrossRef] [PubMed]
- Cole, D.N. Experimental trampling of vegetation. I. Relationship between trampling intensity and vegetation response. J. Appl. Ecol. 1995, 32, 203–214. [Google Scholar] [CrossRef]
- Budowski, G. Tourism and conservation: Conflict; co-existence or symbiosis. Environ. Conserv. 1976, 3, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Cole, D.N. Impacts of hiking and camping on soils and vegetation: A review. In Environmental Impacts of Ecotourism: Ecotourism Series; Buckley, R., Ed.; CABI Publishing: New York, NY, USA, 2004; pp. 41–60. [Google Scholar]
- Pescott, O.L.; Stewart, G.B. Assessing the impact of human trampling on vegetation: A systematic review and meta-analysis of experimental evidence. PeerJ 2014, 2, e360. [Google Scholar] [CrossRef] [Green Version]
- Wagar, J.A. The Carrying Capacity of Wild Lands for Recreation; Society of American Foresters: Washington, DC, USA, 1964. [Google Scholar]
- Cole, D.N. Experimental trampling of vegetation. II. Predictors of resistance and resilience. J. Appl. Ecol. 1995, 32, 215–224. [Google Scholar] [CrossRef]
- Kycko, M.; Zagajewski, B.; Lavender, S.; Romanowska, E.; Zwijacz-Kozica, M. The impact of tourist traffic on the condition and cell structures of alpine swards. Remote Sens. 2018, 10, 220. [Google Scholar] [CrossRef] [Green Version]
- Hertlová, B.; Popelka, O.; Zeidler, M.; Banaš, M. Alpine plant communities responses to simulated mechanical disturbances of tourism, case study from the High Sudetes Mts. J. Landsc. Manag. 2016, 7, 16–21. [Google Scholar]
- Cole, D.N.; Bayfield, N.G. Recreational trampling of vegetation: Standard experimental procedures. Biol. Conserv. 1993, 63, 209–215. [Google Scholar] [CrossRef]
- Li, Z.; Siemann, E.; Deng, B.; Wang, S.; Gao, Y.; Liu, X.; Zhanga, X.; Guoa, X.; Zhang, L. Soil microbial community responses to soil chemistry modifications in alpine meadows following human trampling. CATENA 2020, 194, 104717. [Google Scholar] [CrossRef]
- Willard, B.E.; Cooper, D.J.; Forbes, B.C. Natural regeneration of alpine tundra vegetation after human trampling: A 42-year data set from Rocky Mountain National Park, Colorado, USA. Arct. Antarct. Alp. Res. 2007, 39, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Pickering, C.M.; Growcock, A.J. Impacts of experimental trampling on tall alpine herbfields and subalpine grasslands in the Australian Alps. J. Environ. Manag. 2009, 91, 532–540. [Google Scholar] [CrossRef]
- Chardon, N.I.; Rixen, C.; Wipf, S.; Doak, D.F. Human trampling disturbance exerts different ecological effects at contrasting elevational range limits. J. Appl. Ecol. 2019, 56, 1389–1399. [Google Scholar] [CrossRef]
- Cole, D.N. Effects of three seasons of experimental trampling on five montane forest communities and a grassland in western Montana, USA. Biol. Conserv. 1987, 40, 219–244. [Google Scholar] [CrossRef]
- Whinam, J.; Chilcott, N.M. Impacts after four years of experimental trampling on alpine/sub-alpine environments in western Tasmania. J. Environ. Manag. 2003, 67, 339–351. [Google Scholar] [CrossRef]
- Cole, D.N.; Monz, C.A. Trampling disturbance of high-elevation vegetation, Wind River Mountains, Wyoming, USA. Arct. Antarct. Alp. Res. 2002, 34, 365–376. [Google Scholar] [CrossRef]
- Gallet, S.; Lemauviel, S.; Roze, F. Responses of three heathland shrubs to single or repeated experimental trampling. Environ. Manag. 2004, 33, 821–829. [Google Scholar] [CrossRef]
- Gallet, S.; Roze, F. Long-term effects of trampling on Atlantic heathland in Brittany (France): Resilience and tolerance in relation to season and meteorological conditions. Biol. Conserv. 2002, 103, 267–275. [Google Scholar] [CrossRef]
- Gallet, S.; Roze, F. Resistance of Atlantic Heathlands to trampling in Brittany (France): Influence of vegetation type, season and weather conditions. Biol. Conserv. 2001, 97, 189–198. [Google Scholar] [CrossRef]
- Liddle, M.J. A theoretical relationship between the primary productivity of vegetation and its ability to tolerate trampling. Biol. Conserv. 1975, 8, 251–255. [Google Scholar] [CrossRef]
- Talbot, L.M.; Turton, S.M.; Graham, A.W. Trampling resistance of tropical rainforest soils and vegetation in the wet tropics of north east Australia. J. Environ. Manag. 2003, 69, 63–69. [Google Scholar] [CrossRef]
- Humboldt, A. Ideen zu Einer Geographie der Pflanzen Nebst Einem Naturgemälde der Tropenländer; Cotta: Tübingen, Germany, 1807. [Google Scholar]
- Darwin, C. On the Origin of the Species by Means of Natural Selection; Murray: London, UK, 1859. [Google Scholar]
- Kulkarni, A.V.; Rathore, B.P.; Singh, S.K.; Bahuguna, I.M. Understanding changes in the Himalayan cryosphere using remote sensing techniques. Int. J. Remote Sens. 2002, 32, 601–615. [Google Scholar] [CrossRef]
- Apollo, M.; Andreychouk, V.; Bhattarai, S.S. Short-term impacts of livestock grazing on vegetation and track formation in a high mountain environment: A case study from the Himalayan Miyar Valley (India). Sustainability 2018, 10, 951. [Google Scholar] [CrossRef] [Green Version]
- Saini, R. Glacier Dynamics Water Resource Assessment and Landscape Evolution in Miyar Basin, Lahaul Himalayas, Himachal Pradesh. Ph.D. Thesis, Jawaharlal Nehru University, New Delhi, India, 2008. [Google Scholar]
- Apollo, M. The clash-social, environmental and economical changes in tourism destination areas caused by tourism the case of Himalayan villages (India and Nepal). Curr. Issues Tour. Res. 2015, 5, 6–19. [Google Scholar]
- Zoladek, M.; Kordowska, M. Exploration tourism: Based on selected areas. In Contemporary Studies in Environment and Tourism; Efe, R., Öztürk, M., Eds.; Cambridge Scholars Publishing: Newcastle upon Tyne, UK, 2017; pp. 1–8. [Google Scholar]
- Polunin, O.; Stainton, A. Flowers of the Himalaya; Oxford University Press: New Delhi, India, 2011. [Google Scholar]
- Hylgaard, T.; Liddle, M.J. The effect of human trampling on a sand dune ecosystem dominated by Empetrum nigrum. J. Appl. Ecol. 1981, 18, 559–569. [Google Scholar] [CrossRef]
- Barros, A.; Pickering, C.M. Non-native plant invasion in relation to tourism use of Aconcagua Park, Argentina, the highest protected area in the Southern Hemisphere. Mt. Res. Dev. 2014, 34, 13–26. [Google Scholar] [CrossRef] [Green Version]
Species | Research Plot | Two Weeks After Trampling | One Year After Trampling | ||
---|---|---|---|---|---|
Linear Regression Model | R2 | Linear Regression Model | R2 | ||
Persicaria affinis | M1 | y = −0.0447x + 87.598 | 0.5732 | y = −0.1182x + 82.661 | 0.7639 |
M2 | y = −0.0274x + 92.569 | 0.5218 | y = −0.0669x + 84.822 | 0.574 | |
Aconogonum rumicifolium | M1 | y = −0.1528x + 85.733 | 0.771 | y = −0.1337x + 61.511 | 0.4731 |
M2 | y = −0.1459x + 89.346 | 0.7589 | y = −0.138x + 79.086 | 0.5025 | |
Rhodiola fastigiata | M1 | y = −0.1491x + 76.276 | 0.6907 | y = −0.1285x + 64.052 | 0.5384 |
M2 | y = −0.1522x + 87.204 | 0.8999 | y = −0.1545x + 77.745 | 0.7938 | |
Corydalis govaniana | M1 | not present | |||
M2 | y = −0.1418x + 82.596 | 0.8087 | y = −0.1411x + 64.168 | 0.5921 | |
Anaphalis nepalensis | M1 | y = −0.176x + 89.187 | 0.9411 | y = −0.1365x + 56.569 | 0.5025 |
M2 | y = −0.1999x + 101.32 | 0.9874 | y = −0.3684x + 61.382 | 0.5226 | |
Potentilla argyrophylla | M1 | y = −0.1306x + 98.557 | 0.9638 | y = −0.4962x + 98.645 | 0.9992 |
M2 | y = −0.1758x + 98.966 | 0.8054 | y = −0.1601x + 74.235 | 0.765 | |
Pedicularis bicornuta | M1 | not present | |||
M2 | y = −0.4737x + 87.609 | 0.9054 | y = −1.2857x + 92.857 | 0.9643 | |
Rhodiola heterodonta | M1 | y = −0.1496x + 69.114 | 0.6949 | y = −0.111x + 47.688 | 0.3171 |
M2 | y = −0.1903x + 83.749 | 0.7485 | y = −0.3439x + 55.511 | 0.4207 |
Species | Coefficient | Two Weeks After Trampling | One Year After Trampling |
---|---|---|---|
M1 → M2 (4072 m) → (4480 m) | M1 → M2 (4072 m) → (4480 m) | ||
Persicaria affinis | Mean change (%) | −9.67 | −12.96 |
Pearson correlation coefficient | 0.49 | 0.96 | |
Aconogonum rumicifolium | Mean change (%) | 24.53 | 12.64 |
Pearson correlation coefficient | 0.96 | 0.97 | |
Rhodiola fastigiata | Mean change (%) | −13.04 | −11.91 |
Pearson correlation coefficient | 0.88 | 0.83 | |
Anaphalis nepalensis | Mean change (%) | −10.39 | 9.67 |
Pearson correlation coefficient | 0.99 | 0.81 | |
Potentilla argyrophylla | Mean change (%) | 8.54 | 0.66 |
Pearson correlation coefficient | 0.80 | 0.96 | |
Rhodiola heterodonta | Mean change (%) | −10.14 | 7.69 |
Pearson correlation coefficient | 0.85 | 0.96 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apollo, M.; Andreychouk, V. Trampling Intensity and Vegetation Response and Recovery according to Altitude: An Experimental Study from the Himalayan Miyar Valley. Resources 2020, 9, 98. https://doi.org/10.3390/resources9080098
Apollo M, Andreychouk V. Trampling Intensity and Vegetation Response and Recovery according to Altitude: An Experimental Study from the Himalayan Miyar Valley. Resources. 2020; 9(8):98. https://doi.org/10.3390/resources9080098
Chicago/Turabian StyleApollo, Michal, and Viacheslav Andreychouk. 2020. "Trampling Intensity and Vegetation Response and Recovery according to Altitude: An Experimental Study from the Himalayan Miyar Valley" Resources 9, no. 8: 98. https://doi.org/10.3390/resources9080098
APA StyleApollo, M., & Andreychouk, V. (2020). Trampling Intensity and Vegetation Response and Recovery according to Altitude: An Experimental Study from the Himalayan Miyar Valley. Resources, 9(8), 98. https://doi.org/10.3390/resources9080098