Historical, Current, and Future Energy Demand from Global Copper Production and Its Impact on Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model of Global Copper Production
2.1.1. Total Copper Production
2.1.2. Mining
2.1.3. Mineral Processing
2.1.4. Metallurgy
2.2. Data
2.2.1. Foreground System
2.2.2. Background System
2.3. Indicators
3. Results
3.1. Temporal Developments and Their Effects—1930s to 2010s
3.1.1. Mining
3.1.2. Mineral Processing
3.1.3. Metallurgy
3.1.4. Total Copper Production
3.2. Future Developments
3.2.1. Mining
3.2.2. Mineral Processing
3.2.3. Metallurgy
3.2.4. Electricity Supply
3.2.5. Total Copper Production
- S1: share of open pit mining decreases to 80%
- S2: average depth increases to 750m and average SR to 3
- S3: share of hydrometallurgy rises to 30%
- S4: S1 + S2 + S3
4. Discussion
4.1. Methodology and Data
4.2. By-Products
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Foreground System
Parameter | 1930 | Source | 1970 | Source | 2010 | Source |
---|---|---|---|---|---|---|
Share OP mining | 50% | Estimation based on [37,39,72]1 | 90% | Estimation based on [40,41] | 90% | [73] |
Share UG mining | 50% | 10% | 10% | |||
Share pyrometallurgy | 85% | [45] | 85% | [46] | 80% | [48,51] |
Share hydrometallurgy | 15% | 15% | 20% | |||
Share SX-EW | - | Estimation based on [45] | - | [46] | 100% | [48] |
Share direct EW | 75% | 60% | - | |||
Share cementation | 25% | 40% | - | |||
Ore grade = Mill head grade | 1.7% | [11]; corrected for recovery rate of 85% | 1.3% | [11]; corrected for recovery rate of 85% | 0.7% | [11,74] |
Stripping ratio | OP 1.1 | [68,75] | OP 1.9 | [20,21]; average | OP 2.5 | [28] |
UG n.a. | UG 0.1 | [20] | UG 0.1 | |||
Depth | OP 250 m UG n.a. | Estimation | n.a. | OP/UG: 500 m | [76] | |
Recovery rate CGF | 90% | [67,77] | 88% | [21] | 90% | [24,48] |
Recovery rate leaching | 70% | Estimation based on other years | 75% | [46] | 70% | [18,48] |
Smelting technology | Reverb | [45] | Reverb | [20,46] | Mix, mainly Flash | [48,78] |
Recovery rate smelting | 98% | [79] | 98% | [46] | 97% | [48]; only for previous steps |
Recovery rate refining | 100% | Estimation | 99% | [19] | 100% | Estimation |
Recovery rate cementation | 95% | Estimation based on 1970 | 95% | [46] | - | |
Recovery rate SX | - | - | 90% | [48] | ||
Recovery rate EW | 100% | Estimation | 100% | Estimation | 100% | Estimation |
Note: All Data Refer to Metric Tons | 2010 | 1970 | 1930 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Process Step | Input | Value | Source | Remark | Value | Source | Remark | Value | Source | Remark | ||
Mining | Reference [19]: Original document probably in long tons, no conversion was made, as the associated error (<2%) is negligible | Reference [68]: Original document assumed to be in short tons; Bingham Canyon was already 450 m deep, to adjust values to 250 m it is assumed that 30% are depth related | ||||||||||
OP | Mining | Electricity (kWh/t ore) | 1.0 | [24,31] | Crushing in mine | 0.9 | [19] | 0.9 | [68] | |||
Stripping | Electricity (kWh/t overburden) | - | - | - | - | 0.7 | [68] | Assumed density 2 t/m3 | ||||
Mining | Diesel (MJ/t ore) | 15.7 | [80,81] | Calculated; Drilling (2 MJ) + Loading (CAT 6090 FS; 7.3 MJ) + Transport (CAT 795F AC; 1.3 MJ + 0.5 MJ× km) | 10.8 | [19] | For more detailed information see original source | - | ||||
Stripping | Coal (kg/t overburden) | - | - | - | - | - | 1.4 | [68] | Assumed density 2 t/m3 | |||
Mining | Explosives (kg/t ore) | 0.3 | [82] | Powder factor medium, assumed density 2 t/m3 | 0.1 | [19] | 0.1 | [68] | ||||
Stripping | Explosives (kg/t overburden) | - | - | - | - | 0.1 | [68] | Assumed density 2 t/m3 | ||||
UG | Mining | Electricity (kWh/t ore) | 25.0 | [24,62,83] | Own calculation; Ventilation (20 kWh) + Crushing (1 kWh) + Hoisting (0.008 kWh/m·depth in m) | 15.0 | [20,47] | Total, mining and stripping | 20.4 | [75] | Total, mining and stripping; mean value from 100 and 200 tons production | |
Mining | Diesel (MJ/t ore) | 17.2 | [80,83,84,85] | Own calculation; Drilling (11.5 MJ), Hauling + Loading (5.7 MJ) | 21.8 | [20,47] | Total, mining and stripping | - | ||||
Mining | Nat Gas (MJ/t ore) | - | 13.4 | [20,47] | Total, mining and stripping | - | ||||||
Mining | Explosives (kg/t ore) | 0.4 | [83] | 0.7 | [20] | 0.7 | [75] | Total, mining and stripping; mean value from 100 and 200 tons production | ||||
Stripping | Explosives (kg/t overburden) | - | 0.7 | Estimation based on [20] | - | |||||||
CGF | ||||||||||||
Crushing | Electricity (kWh/t ore milled) | 12.4 | WI: [31] | Own calculation; 150,000 to 400 μm and 400 to 100 μm (Bonds law); WI 12.7 | 15.0 | [19,20] | 3.9 | [67] | ||||
Grinding | Electricity (kWh/t ore milled) | 8.3 | [67] | |||||||||
Flotation | Electricity (kWh/t ore milled) | 4.0 | [24] | Incl. regrinding and tailings disposal | 5.4 | [67] | ||||||
Dewatering | Electricity (kWh/t ore milled) | - | 0.2 | [67] | ||||||||
Water Supply + Research | Electricity (kWh/t ore milled) | - | - | 0.6 | [67] | |||||||
CFG | Water (m3/t ore milled) | 0.6 | [44] | Approximation | 2.8 | [19] | 4.0 | [77] | Average from two mines | |||
Crushing & Grinding | Steel (kg/t ore milled) | 0.7 | [24] | 1.0 | [20,46] | 0.7 | [67] | |||||
Flotation | Lime (kg/t ore milled) | 1.0 | [48] | Approximation | 1.8 | [19,20] | 1.9 | [67] | ||||
Flotation | Chemicals (kg/t ore milled) | 0.1 | [48] | Approximation; Collector: Xanthate 30 g Frother: MIBC 100 g | 0.05 | [19,20] | 0.1 | [67] | ||||
Leaching VAT, EW | ||||||||||||
VAT Leaching | Electricity (kWh/t ore) | - | 6.8 | Own calculation based on [24] | Leaching, crushing, grinding from 150,000 to 10,000 μm (Bonds law); WI 12.7 | 6.8 | Estimation based on 1970 | |||||
VAT Leaching | Water (m3/t ore) | - | 0.2 | Estimation based on other years | 0.3 | [86] | ||||||
VAT Leaching | H2SO4 (kg/t ore) | - | 30.0 | [46] | 12.3 | [86] | Concentration of H2SO4 adjusted (100% acid) | |||||
EW | Electricity (kWh/t Cu) | - | 2400 | [20] | Value per t Cu cathode | 2430 | Estimation based on [45] | Value per t Cu cathode | ||||
Leaching heap, cementation or SX-EW | For pyrometallurgy values stated below are adjusted according to copper concentration of input (90%) | |||||||||||
Heap Leaching | Electricity (kWh/t ore) | 3.0 | [24] | Leaching, crushing | 5.9 | Own calculation based on [24] | Leaching, primary and secondary crushing | 5.9 | Estimation based on 1970 | |||
Heap Leaching | Water (m3/t ore) | 0.1 | [44] | Approximation | 0.2 | Estimation based on other years | 0.3 | Estimation based on VAT Leaching | ||||
Heap Leaching | H2SO4 (kg/t ore) | 13.0 | [18] | Average | 42.5 | [87] | Average, assumed recovery rate 70% | 24.7 | Estimation based on VAT Leaching | Double VAT Leaching [86]; solution from cementation not recoverable [88] | ||
Cementation | Electricity (kWh/t Cu) | - | 5.6 | [21] | 90% Cu in cement copper [89] | 6.7 | Estimation based on 1970 | 75% Cu in cement copper [86] | ||||
Cementation | Steel Scrap (t/t Cu) | - | 1.8 | [46] | 2.0 | [86] | ||||||
SX | Electricity (kWh/t Cu) | 1000 | [24] | - | - | |||||||
SX | Steam (kg/t Cu) | 0.2 | [90] | - | - | |||||||
EW | Electricity (kWh/t Cu) | 2000 | [18,49] | Value per t Cu cathode | - | - | ||||||
Pyrometallurgy | ||||||||||||
Smelting & Converting | Pulv. Coal (MJ/t Cu) | - | 21,771 | [46] | 18,833 | [91] | Adjusted: concentration (32% Cu in conc.) and moisture of 10%; incl. heat recovery | |||||
Electricity (kWh/t Cu) | 500 | [78] | Mix | - | 300 | Estimation based on [19] | Air blower | |||||
Fuel Oil (MJ/t Cu) | 4175 | [78] | Mix | - | - | |||||||
Oxygen (kg/t Cu) | 909 | [78] | Mix | - | - | |||||||
Silica Flux (kg/t Cu) | 350 | [78] | Mix | 1140 | [92] | n.a. | Negligible | |||||
Limestone (kg/t Cu) | 180 | [78] | Mix | 140 | [92] | n.a. | Negligible | |||||
Scrap (kg/t Cu) | 110 | [78] | Mix | - | ||||||||
Fire Refining | Nat. Gas (MJ/t Cu) | - | 1884 | [46] | 2678 | [45] | Incl. heat recovery | |||||
Elect. Refining | Electricity (kWh/t Cu) | 400 | [24,93] | 300 | [46] | 401 | [45] | Maximum | ||||
Gas Treatment | Water (m3/t Cu) | 0.5 | [78] | Mix | - |
Appendix B. Future Developments
- OP mining: change to conveyor instead of diesel driven trucks
- ○
- Energy demand conveyor: 0.0025kWh/t·m vertical lift [94]
- ○
- Total energy demand OP mining:
- ▪
- Electricity: 2.3 kWh/ton ore or overburden
- ▪
- Diesel: 9.3 MJ Diesel/ton ore or overburden
- ▪
- Explosives: 2010 value
- UG mining: shift to fully electric vehicles
- ○
- Energy demand drilling: 70% of corresponding diesel equipment [61]
- ○
- Energy demand hauling: 0.5 kWh/ton ore or overburden [84]
- ○
- Energy demand transport: 2010 value (shaft)
- ○
- Ventilation: regulation of the temperature is the determining factor for ventilation in electrically operated mines. The temperature rises with increasing depth, and therefore also the required air flow. The extent to which the air flow rises cannot be clearly determined from literature sources [57,61]. In the work of Koksis and Hardcastle [57] the air flow increases by 3% per 100 m with an increase in mine depth from 240 m to 900 m. Halim u. Kerai [61] assume an airflow increase by 15% per 100 m (from 600 m to 1000 m) plus air cooling. In this work an increase of 10% per 100 m is assumed. An additional cooling effort is not included in this work as this is usually the case at a depth that is not reached by copper mines. This leads to the following function to determine the electricity needed for ventilation:
- ○
- Total energy demand UG mining:
- ▪
- Electricity: 19.4 kWh/t ore or overburden
- ▪
- Explosives: 2010 value
- Beneficiation: 20% reduction of grinding energy [58]
- ○
- Total material flows smelting:
- ▪
- Nat. Gas: 2707 MJ/t Cu
- ▪
- Electricity: 400 kWh/t Cu
- ▪
- Oxygen: 1170 kg/t Cu
- ▪
- Silica Flux: 309 kg/t Cu
- ▪
- Limestone: 146 kg/t Cu
- ▪
- Scrap: 112 kg/t Cu
- ▪
- Water: 570 kg/t Cu (for Gas treatment)
Appendix C. Background System
CED | 1930 | 1970 | 2010 | ||||||
---|---|---|---|---|---|---|---|---|---|
Material | Value | Source | Remark | Value | Source | Remark | Value | Source | Remark |
Explosive (MJ-eq/kg) | 49.9 | [21] | Highest literature value for 1970 as approx. | 35.5 | [19] | 22.7 | Own calculation based on ecoinvent datasets | 95% fuel oil, 5% nitric acid | |
Steel (MJ-eq/kg) | 63.0 | [95] | 1950 value | 40.0 | [95] | 22 | ecoinvent v3.3, market for steel, unalloyed (GLO) | According to [95]: 18 MJ-eq/kg | |
Steel scrap (MJ-eq/kg) | 31.2 | Own calculation based on development of CED of steel | 19.8 | [21] | - | - | |||
Copper scrap (MJ-eq/kg) | - | - | 0.6 | ecoinvent v3.3, market for copper scrap, sorted, pressed (GLO) | |||||
Diesel (MJ-eq/MJ) | - | 1.5 | ecoinvent v3.3 diesel, burned in building machine (GLO) | 2010 value | 1.5 | ecoinvent v3.3, diesel, burned in building machine (GLO) | |||
Lime(stone) (MJ-eq/kg) | - | - | 0.04 | ecoinvent v3.3, limestone production, crushed, washed (RoW) | |||||
Lime (MJ-eq/kg) | 4.8 | [19] Appendix 15 | 1970 value as approximation | 4.8 | [19] Appendix 15 | 7.1 | ecoinvent v3.3, market for quicklime, milled, packed (GLO) | ||
Chemicals (MJ-eq/kg) | 19.8 | [19] | 1970 value as approximation | 19.8 | [19] | 66.3 | Own calculation | Mixture of 23% frother (MIBC) and 77% collector (Xanthate) | |
Collector Xanthate (MJ-eq/kg) | - | - | 54.1 | Own calculation based on [96] | |||||
Frother MIBC (MJ-eq/kg) | - | - | 107 | [97] | |||||
Oxygen (MJ-eq/kg) | - | - | 3.4 | Based on ecoinvent v3.3, air separation, cryogenic (RER) | Electricity consumption in dataset adjusted according to [98] | ||||
Silica (MJ-eq/kg) | - | 0.4 | [21,99] | Production + crushing | 0.6 | ecoinvent v3.3, market for silica sand (GLO) | |||
Water, desalinated (MJ-eq/m3)1 | - | - | 38.0 | Own calculation based on [44,54] | Only for production share of Chile (36%) | ||||
Sulfuric acid (MJ-eq/kg) | 8.7 | Calculation based on 1970 to 2010 | Main contribution from sulphur | 7.6 | [100] | 6.7 | ecoinvent v3.3, market for sulfuric acid (GLO) | ||
Steam (MJ-eq/kg) | - | - | 2.8 | ecoinvent v3.3, market for steam, chemical industry (GLO) | |||||
Nat. Gas (MJ-eq/MJ) | 1.1 | Estimation based on [101] | Average | 1.1 | Estimation based on [101] | Average | 1.1 | ecoinvent v3.3, market group for natural gas, high pressure (GLO) | Assumed heating value: 11.4 kWh/m3 |
Fuel Oil (MJ-eq/kg) | - | - | 56.4 | ecoinvent v3.3, market for heavy fuel oil (RoW) | |||||
Coal (MJ-eq/MJ) | 1.0 | [102] | 1.0 | [102] | - | ||||
Electricity Mining (MJ-eq/kWh) | 14.4 | Calculation, see 2.2.2 | 7.0 | Calculation, see 2.2.2 | 7.7 | Calculation, see 2.2.2 | |||
Electricity Smelting (MJ-eq/kWh) | 14.4 | Calculation, see 2.2.2 | 7.2 | Calculation, see 2.2.2 | 8.4 | Calculation, see 2.2.2 | |||
Electricity Refining (MJ-eq/kWh) | 14.4 | Calculation, see 2.2.2 | 8.0 | Calculation, see 2.2.2 | 8.4 | Calculation, see 2.2.2 |
GWP | 1930 | 1970 | 2010 | ||||||
---|---|---|---|---|---|---|---|---|---|
Material | Value | Source | Remark | Value | Source | Remark | Value | Source | Remark |
Explosive (kg CO2/kg) | 6.4 | Estimation based on CED | 4.6 | Estimation based on CED | 2.9 | Calculation | |||
Steel (kg CO2/kg) | 4.9 | [95] | 1950 value | 3.8 | [95] | 2.0 | ecoinvent v3.3, market for steel, unalloyed (GLO) | ||
Steel Scrap (kg CO2/kg) | 1.7 | Estimation based on CED steel and steel scrap | 1.3 | Estimation based on CED steel and steel scrap | - | - | |||
Copper Scrap (kg CO2/kg) | - | - | 0.03 | ecoinvent v3.3, market for copper scrap, sorted, pressed (GLO) | |||||
Diesel (kg CO2/MJ) | - | 0.1 | ecoinvent v3.3 diesel, burned in building machine (GLO) | 2010 value assumed | 0.1 | ecoinvent v3.3 diesel, burned in building machine (GLO) | |||
Lime(stone) (kg CO2/kg) | - | - | 3 × 10−3 | ecoinvent v3.3, limestone production, crushed, washed (RoW) | |||||
Lime (kg CO2/kg) | 0.8 | Estimation based on CED | 1970 value | 0.8 | Estimation based on CED | 1.2 | ecoinvent v3.3, market for quicklime, milled, packed (GLO) | ||
Chemicals (kg CO2/kg) | 0.26 | Estimation based on CED | 1970 value | 0.26 | Estimation based on CED | 0.87 | Calculation | ||
Xanthate (kg CO2/kg) | - | 1.6 | Calculation based on [96] | ||||||
Frother (kg CO2/kg) | - | - | 3.2 | [97] | |||||
Oxygen (kg CO2/kg) | - | - | −0.2 | Based on ecoinvent v3.3, air separation, cryogenic (RER) | Electricity consumption adjusted according to [98] | ||||
Silica (kg CO2/kg) | - | 0.03 | Estimation based on CED | 0.05 | ecoinvent v3.3, market for silica sand (GLO) | ||||
Water, tap (kg CO2/kg)1 | 1.7 × 10−4 | Estimation based on 1970 | 1.7 × 10−4 | Estimation based on CED | 5.7 × 10−4 | ecoinvent v3.3, market group for tap water (GLO) | |||
Water, desalinated (t CO2/m3)1 | - | - | 2.5 | own calculation based on [44] | |||||
Sulfuric acid (kg CO2/kg) | 0.20 | Estimation based on CED | 0.18 | Estimation based on CED | 0.16 | ecoinvent v 3.3 market for sulfuric acid (GLO) | |||
Steam (kg CO2/kg) | - | - | 0.2 | ecoinvent v3.3, market for steam, chemical industry (GLO) | |||||
Nat. Gas (kg CO2/MJ) | 0.06 | [32] | Standard emission factor | 0.06 | [32] | Standard emission factor | 0.06 | ecoinvent v3.3, market group for natural gas, high pressure (GLO), [32] | Production + combustion |
Fuel Oil (kg CO2/MJ) | - | - | 0.09 | ecoinvent v3.3, market for heavy fuel oil (RoW), [32] | Production + combustion | ||||
Coal (kg CO2/MJ) | 0.1 | [32] | Standard emission factor | 0.1 | [32] | Standard emission factor | - | ||
Electricity Mining (kg CO2/kWh) | 1.2 | Calculation, see 2.2.2 | 0.5 | Calculation, see 2.2.2 | 0.5 | Calculation, see 2.2.2 | |||
Electricity Smelting (kg CO2/kWh) | 1.2 | Calculation, see 2.2.2 | 0.5 | Calculation, see 2.2.2 | 0.6 | Calculation, see 2.2.2 | |||
Electricity Refining (kg CO2/kWh) | 1.2 | Calculation, see 2.2.2 | 0.6 | Calculation, see 2.2.2 | 0.6 | Calculation, see 2.2.2 |
Energy Carrier | Efficiency1 | Source |
---|---|---|
Hydro | 90% | [103] |
Coal | 33% | [104] |
Natural Gas | 42% | [104] |
Oil/Petr. | 31% | [104] |
Nuclear | 33% | [104] |
Others (Renewables) | 94% | [103] |
1930s | 1970s | 2010s | ||||
---|---|---|---|---|---|---|
Mining | ||||||
USA | 74% | USA | 30% | Chile | 40% | |
Chile | 26% | Chile | 13% | Peru | 9% | |
Zambia | 13% | China | 9% | |||
Canada | 12% | USA | 8% | |||
USSR | 11% | Indonesia | 6% | |||
Congo | 7% | Australia | 6% | |||
Peru | 4% | Russia | 5% | |||
South Africa | 3% | Zambia | 5% | |||
Australia | 3% | Canada | 4% | |||
Philippines | 3% | Poland | 3% | |||
Congo | 3% | |||||
Smelting | ||||||
USA | 78% | USA | 27% | China | 23% | |
Chile | 22% | Japan | 13% | Chile | 13% | |
Zambia | 12% | Japan | 12% | |||
Chile | 12% | India | 5% | |||
ZSSR | 10% | USA | 5% | |||
Canada | 9% | Russia | 5% | |||
Congo | 7% | North Korea | 5% | |||
Peru | 3% | Zambia | 4% | |||
South Africa | 2% | Poland | 4% | |||
Yugoslavia | 2% | Australia | 3% | |||
China | 2% | Germany | 3% | |||
Kazakhstan | 3% | |||||
Canada | 3% | |||||
Peru | 3% | |||||
Iran | 2% | |||||
Indonesia | 2% | |||||
Bulgaria | 2% | |||||
Spain | 2% | |||||
Refining | ||||||
n.a., same shares as smelting assumed | USA | 25% | Chile | 23% | ||
Japan | 13% | China | 21% | |||
USSR | 10% | Japan | 9% | |||
Zambia | 9% | USA | 7% | |||
Canada | 8% | Russia | 5% | |||
Chile | 8% | India | 5% | |||
Germany, West | 7% | Zambia | 4% | |||
Belgium | 6% | South Korea | 3% | |||
Zaire | 4% | Poland | 3% | |||
Australia | 2% | Australia | 3% | |||
Spain | 2% | Peru | 3% | |||
China | 2% | Germany | 2% | |||
Poland | 2% | Kazakhstan | 2% | |||
Yugoslavia | 2% | Canada | 2% | |||
Indonesia | 2% | |||||
Mexico | 2% | |||||
Spain | 2% | |||||
Congo | 2% |
Appendix D. Allocation
US Production | Copper (Kt) | By-Products | |||||||
Gold (t) | Silver (t) | Molybdenum (t) | Zinc (t) | Lead (t) | Nickel (t) | Sulfuric Acid (Kt) | |||
1930 | 793 | 8 | 320 | 0 | 1202 | 2748 | 300 | 0 | |
1970 | 1478 | 18 | 703 | 14 | 41,584 | 11,212 | 1594 | 747 | |
2010 | 1106 | 12 | 162 | 33 | 6055 | 0 | 0 | 2033 | |
World Production | Copper (Kt) | By-Products | |||||||
Gold (t) | Silver (t) | Molybdenum (t) | Cobalt (t) | Zink (Kt) | Lead (t) | Nickel (t) | Sulfuric Acid (Kt) | ||
2010 | 15,927 | 263 | 4615 | 139,447 | 55,785 | 1437 | 26,335 | 993,182 | 35,040 |
References
- Van der Voet, E.; van Oers, L.; Verboon, M.; Kuipers, K. Environmental Implications of Future Demand Scenarios for Metals: Methodology and Application to the Case of Seven Major Metals. J. Ind. Ecol. 2018, 13, 141–155. [Google Scholar] [CrossRef] [Green Version]
- Elshkaki, A.; Graedel, T.E.; Ciacci, L.; Reck, B.K. Resource Demand Scenarios for the Major Metals. Environ. Sci. Technol. 2018, 52, 2491–2497. [Google Scholar] [CrossRef] [PubMed]
- Purr, K.; Günther, J.; Lehmann, H.; Nuss, P. Wege in Eine Ressourcenschonende Treibhausgasneutralität. RESCUE—Studie; Umweltbundesamt: Dessau-Roßlau, Germany, 2019.
- Ali, S.H.; Giurco, D.; Arndt, N.; Nickless, E.; Brown, G.; Demetriades, A.; Durrheim, R.; Enriquez, M.A.; Kinnaird, J.; Littleboy, A.; et al. Mineral supply for sustainable development requires resource governance. Nature 2017, 543, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Reuter, M.A.; Heiskanen, K.; Boin, U.; van Schaik, A.; Verhoef, E.; Yang, Y.; Gorgalli, G. The Metrics of Material and Metal Ecology; Elsevier Science: Amsterdam, The Netherlands, 2005; ISBN 9780444511379. [Google Scholar]
- Kavlak, G.; Graedel, T.E. Global anthropogenic selenium cycles for 1940–2010. Resour. Conserv. Recycl. 2013, 73, 17–22. [Google Scholar] [CrossRef]
- Arndt, N.T.; Fontboté, L.; Hedenquist, J.W.; Kesler, S.E.; Thompson, J.F.H.; Wood, D.G. Future Global Mineral Resources. Geochem. Perspect. 2017, 6, 1–171. [Google Scholar] [CrossRef] [Green Version]
- Skinner, B.J. Second Iron Age ahead? Am. Sci. 1976, 64, 258–269. [Google Scholar]
- Lasky, S.G. How tonnage and grade relations help predict ore reserves. Eng. Min. J. 1950, 151, 81–85. [Google Scholar]
- Mudd, G.M. The Sustainability of Mining in Australia: Key Production Trends and Environmental Implications; Research Report No RP5; Department of Civil Engineering, Monash University and Mineral Policy Institute: Melbourne, Australia, 2009. [Google Scholar]
- Crowson, P. Some observations on copper yields and ore grades. Resour. Policy 2012, 37, 59–72. [Google Scholar] [CrossRef]
- Rötzer, N.; Schmidt, M. Decreasing Metal Ore Grades—Is the Fear of Resource Depletion Justified? Resources 2018, 7, 88. [Google Scholar] [CrossRef] [Green Version]
- Northey, S.A.; Mudd, G.M.; Werner, T.T. Unresolved Complexity in Assessments of Mineral Resource Depletion and Availability. Nat. Resour. Res. 2018, 27, 241–255. [Google Scholar] [CrossRef]
- Bardi, U. The mineral question: How energy and technology will determine the future of mining. Front. Energy Res. 2013, 1, 9. [Google Scholar] [CrossRef] [Green Version]
- Northey, S.; Haque, N.; Mudd, G. Using sustainability reporting to assess the environmental footprint of copper mining. J. Clean. Prod. 2013, 40, 118–128. [Google Scholar] [CrossRef]
- Calvo, G.; Mudd, G.M.; Valero, A.; Valero, A. Decreasing ore grades in global metallic mining: A theoretical issue or a global reality? Resources 2016, 5, 36. [Google Scholar] [CrossRef] [Green Version]
- Koppelaar, R.H.E.M.; Koppelaar, H. The Ore Grade and Depth Influence on Copper Energy Inputs. Biophys. Econ. Resour. Qual. 2016, 1, 11. [Google Scholar] [CrossRef] [Green Version]
- ICA. Copper Cathode Life Cycle Assessment; International Copper Association (ICA): Washington, DC, USA, 2017. [Google Scholar]
- Chapman, P.F. The Energy Costs of Producing Copper and Aluminium from Primary Sources; Report No. ERG 001; Open University, Energy Research Group: Milton Keynes, UK, 1973. [Google Scholar]
- Gaines, L.L. Energy and Materials Flows in the Copper Industry; ANL/CNSV-11; Argonne National Laboratory: Argonne, IL, USA, 1980.
- Pitt, C.H.; Wadsworth, M.E. An Assessment of Energy Requirements in Proven and New Copper Processes. Final Report; DOE/CS/40132; Department of Metallurgy and Metallurgical Engineering, University of Utah: Salt Lake City, UT, USA, 1980. [Google Scholar]
- Norgate, T.; Jahanshahi, S. Low grade ores—Smelt, leach or concentrate? Miner. Eng. 2010, 23, 65–73. [Google Scholar] [CrossRef]
- Norgate, T.; Haque, N. Using life cycle assessment to evaluate some environmental impacts of gold production. J. Clean. Prod. 2012, 29–30, 53–63. [Google Scholar] [CrossRef]
- Marsden, J.O. Energy efficiency and copper hydrometallurgy. In Hydrometallurgy 2008: Proceedings of the Sixth International Symposium; Young, C.A., Taylor, P.R., Anderson, C.G., Choi, Y., Eds.; Society for Mining, Metallurgy, and Exploration: Littleton, CO, USA, 2008; pp. 29–40. [Google Scholar]
- Möller, A. Grundlagen Stoffstrombasierter Betrieblicher Umweltinformationssysteme; Projekt: Bochum, Germany, 2000; ISBN 978-3-89733-052-8. [Google Scholar]
- Schmidt, M.; Möller, A.; Hedemann, J.; Müller-Bleischmidt, P. Environmental Material Flow Analysis by Network Approach. In Umweltinformatik ’97: Informatique Pour L’environnement ’97; Geiger, W., Jaeschke, A., Rentz, O., Eds.; Metropolis: Marburg, Germany, 1997; pp. 768–779. ISBN 978-3-89518-163-4. [Google Scholar]
- Camm, T.W. Simplified Cost Models for Prefeasibility Mineral Evaluations; Bureau of Mines Information Circular 9298; U.S. Department of the Interior, Bureau of Mines: Washington, DC, USA, 1991.
- Atlas Copco. Mining Methods in Underground Mining; Atlas Copco Rock Drills: Örebro, Switzerland, 2007. [Google Scholar]
- Ebrahimi, A. The Importance of Dilution Factor for Open Pit Mining Projects. Available online: https://www.srk.com.hk/files/File/papers/dilution_factor_openpit_a_ebrahimi.pdf (accessed on 25 June 2019).
- Hustrulid, W.A.; Bullock, R.C. Underground Mining Methods. Engineering Fundamentals and International Case Studies; Society for Mining, Metallurgy, and Exploration: Littleton, CO, USA, 2001; ISBN 978-0873351935. [Google Scholar]
- Fuerstenau, M.C.; Han, K.N. Principles of Mineral Processing; Society for Mining, Metallurgy and Exploration: Littleton, CO, USA, 2003; ISBN 0-87335-167-3. [Google Scholar]
- EIA. Annual Energy Review 2009; Energy Information Adminstration: Washington, DC, USA, 2010.
- IEA/OECD. CO2 Emissions from Fuel Combustion. Emissions de CO2 Dues à la Combustion D’énergie, 2009 ed.; OECD Publishing: Paris, France, 2009; ISBN 978-92-64-06102-6. [Google Scholar]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): overview and methodology. Int. J. Life Cycle Ass. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Chapman, P.F.; Roberts, F. Metal Resources and Energy; Butterworths: London, UK, 1983; ISBN 0-408-10801-0. [Google Scholar]
- Huijbregts, M.A.J.; Rombouts, L.J.A.; Hellweg, S.; Frischknecht, R.; Hendriks, A.J.; van de Meent, D.; Ragas, A.M.J.; Reijnders, L.; Struijs, J. Is Cumulative Fossil Energy Demand a Useful Indicator for the Environmental Performance of Products? Environ. Sci. Technol. 2006, 40, 641–648. [Google Scholar] [CrossRef] [Green Version]
- Leong, Y.S.; Erdreich, E.; Burrit, J.C.; Kiessling, O.E.; Nighman, C.E.; Heikes, G.C. Technology, Employment and Output Per Man in Copper Mining; Report No. E-12; Work Projects Administration in cooperation with Dept. of the Interior, Bureau of Mines: Philadelphia, PA, USA, 1940.
- Alvear Urrutia, J. Chile Nuestro Cobre. Chuquicamate, El Salvador, Potrerillos, El Teniente, Enami, Mantos Blancos y Andina; Editorial Lastra S.A.: Santiago, Chile, 1975. [Google Scholar]
- Birchard, R.E. Copper in the Katanga Region of the Belgian Congo. Econ. Geogr. 1940, 16, 429–436. [Google Scholar] [CrossRef]
- Schroeder, H.J.; Cole, J.W. Copper. In Minerals Yearbook: Metals, Minerals, and Fuels 1970; U.S. Bureau of Mines, Ed.; U.S. Bureau of Mines: Washington, DC, USA, 1970; pp. 467–500. [Google Scholar]
- Hearn, R.; Hoye, R. Copper Dump Leaching and Management Practices that Minimize the Potential for Environmental Releases; Final Report; U.S. Environmental Protection Agency (EPA): Cincinanati, OH, USA, 1989.
- Giurco, D.; Cooper, C. Mining and sustainability: Asking the right questions. Miner. Eng. 2012, 29, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Randolph, M. Current trends in mining. In SME Mining Engineering Handbook, 3rd ed.; Darling, P., Ed.; Society for Mining, Metallurgy, and Exploration: Englewood, CO, USA, 2011; pp. 11–20. ISBN 978-0-87335-341-0. [Google Scholar]
- Montes Prunés, C.; Castillo Dintrans, E.; Cantallopts Araya, J. Hydrological Consumption in Copper Mining for 2014; Cochilco—Chilean Copper Commission: Santiago, Chile, 2015.
- Newton, J.; Wilson, C.L. Metallurgy of Copper; John Wiley and Sons Inc.: New York, NY, USA, 1942. [Google Scholar]
- Biswas, A.K.; Davenport, W.G. Extractive Metallurgy of Copper, 1st ed.; Pergamon: Oxford, UK; New York, NY, USA, 1976; ISBN 0080196586. [Google Scholar]
- Rosenkranz, R.R. Energy Consumption in Domestic Primary Copper Production; Information Circular 8698; U.S. Department of the Interior; Bureau of Mines: Washington, DC, USA, 1976.
- Schlesinger, M.E.; King, M.J.; Sole, K.C.; Davenport, W.G. Extractive Metallurgy of Copper; Elsevier: Amsterdam, The Netherlands, 2011; ISBN 978-0-08096789-9. [Google Scholar]
- Wilburn, D.R.; Goonan, T.G.; Bleiwas, D.I. Technological Advancement—A Factor in Increasing Resource Use; Open File Report 2001-197; Verstion1.03; 2001. Available online: https://pubs.er.usgs.gov/publication/ofr01197 (accessed on 21 December 2017).
- Boliden. Metals for a Sustainable Society; 2018 Annual and Sustainability Report; Boliden: Stockholm, Switzerland, 2019. [Google Scholar]
- Mudd, G.M.; Jowitt, S.M. Growing Global Copper Resources, Reserves and Production: Discovery Is Not the Only Control on Supply. Econ. Geol. 2018, 113, 1235–1267. [Google Scholar] [CrossRef]
- Northey, S.; Mohr, S.; Mudd, G.M.; Weng, Z.; Giurco, D. Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining. Resour. Conserv. Recycl. 2014, 83, 190–201. [Google Scholar] [CrossRef]
- West, J. Decreasing metal ore grades: Are they really being driven by the depletion of high-grade deposits? J. Ind. Ecol. 2011, 15, 165–168. [Google Scholar] [CrossRef]
- Brantes Abarca, R.; Cantallopts Araya, J. Forecast for Electricity Consumption in the Copper Mining Industry. 2018-2029; Cochilco—Chilean Copper Commission: Santiago, Chile, 2018.
- Bertram, M.; Graedel, T.E.; Rechberger, H.; Spatari, S. The contemporary European copper cycle: Waste management subsystem. Ecol. Econ. 2002, 42, 43–57. [Google Scholar] [CrossRef]
- Jeswiet, J.; Archibald, J.; Thorley, U.; de Souza, E. Energy Use in Premanufacture (Mining). Procedia CIRP 2015, 29, 816–821. [Google Scholar] [CrossRef]
- Kocsis, C.K.; Hardcastle, S. Ventilation system operating cost comparison between a conventional and an automated underground metal mine. Min. Eng. 2003, 55, 30–37. [Google Scholar]
- Wang, C.; Nadolski, S.; Mejia, O.; Drozdiak, J.; Klein, B. Energy and Cost Comparisons of HPGR Based Circuits with the SABC Circuit Installed at the Huckleberry Mine. In Proceedings of the 45th Annual Canadian Mineral Processors Operators Conference, Ottawa, ON, USA, 22–24 January 2013; pp. 121–135. [Google Scholar]
- ESU; IFEU. New Energy Externalities Developments for Sustainability (NEEDS); Deliverable D15.1 “LCA of Background Processes”; Project No. 502687; 2008; Available online: http://www.needs-project.org/RS1a/RS1a%20D15.1%20LCA%20of%20background%20processes.pdf (accessed on 1 October 2019).
- Maennling, N.; Toledano, P. The Renewable Power of the Mine. Accelerating Renewable Energy Integration; Report; Columbia Center on Sustainable Investment (CCSI): New York, NY, USA, 2018. [Google Scholar]
- Halim, A.; Kerai, M. Ventilation Requirement for ‘Electric’ Underground Hard Rock Mines—A Conceptual Study. In Proceedings of the Australian Mine Ventilation Conference, Adelaide, Australia, 1–3 July 2013; pp. 215–220. [Google Scholar]
- Wallace, K.G. General operation characteristics and industry practices of mine ventilation systems. In Proceedings of the 7th International Mine Ventilation Congress, Krakow, Poland, 17–22 June 2001. [Google Scholar]
- BHP Billiton. Our Shared Values. Annual Report 2013; BHP Billiton: Melbourne, Australia, 2013. [Google Scholar]
- Antofagasta. Annual Report and Financial Statements 2013; Antofagasta: London, UK, 2014. [Google Scholar]
- Codelco. Energy and Climate Change: Codelco Website. Available online: https://www.codelco.com/energia-y-cambio-climatico/reporte2012/2013-04-17/153201.html;18.09.17 (accessed on 25 February 2020).
- Codelco. Annual Report 2013: Codelco Website. Available online: https://www.codelco.com/memoria2013/site/edic/base/port/inicio.html (accessed on 15 February 2020).
- Martin, H.C. The Arthur and Magna Concentrators of the Utah Copper Co.; U.S. Department of Commerce, Bureau of Mines: Washington, DC, USA, 1931.
- Soderberg, A. Mining Method and Costs at the Utah Copper Co., Bingham Canyon, Utah; Information Circular 6234; Department of Commerce, U.S. Bureau of Mines: Washington, DC, USA, 1930.
- Ross, C. Ecology and Power in the Age of Empire. Europe and the Transformation of the Tropical Word; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Deutsches Institut für Normung e. V. (DIN). DIN EN ISO 14044: Environmental Management—Life Cycle Assessment—Requirements and Guidelines; Beuth Verlag: Berlin, Germany, 2018. [Google Scholar]
- Schäfer, P.; Schmidt, M. Discrete-point analysis of the energy demand of primary versus secondary metal production. Environ. Sci. Technol. 2020, 54, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Finn, J.L. Tracing the Veins. Of Copper, Culture, and Community from Butte to Chuquicamata; University of California Press: Barkeley, CA, USA; Los Angeles, CA, USA, 1998. [Google Scholar]
- ECI. Processes. European Copper Institute, Copper Alliance. 2018. Available online: https://copperalliance.eu/about-copper/copper-and-its-alloys/processes/ (accessed on 18 January 2020).
- Amegroup. Declining Copper Ore Grades. Ame Research (February 2018). Available online: http://aus.amegroup.com/Website/FeatureArticleDetail.aspx?faId=437 (accessed on 17 December 2019).
- Jackson, C.F.; Hedges, J.H. Metal-Mining Practice; Bureau of Mines Bull. 419; U. S. Bureau of Mines: Washington, DC, USA, 1939.
- Harmsen, J.H.M.; Roes, A.L.; Patel, M.K. The impact of copper scarcity on the efficiency of 2050 global renewable energy scenarios. Energy 2013, 50, 62–73. [Google Scholar] [CrossRef]
- Tenney, J.B. Second Report on the Mineral Industries of Arizona; University of Arizona Bulletin VOL. 1 Nr. 1; University of Arizona: Tucson, AZ, USA, 1930. [Google Scholar]
- Goonan, T.G. Flows of Selected Materials Associated with World Copper Smelting; Open-File Report 2004-1395; U.S. Geological Survey: Reston, VA, USA, 2005.
- McDaniel, L. The Morenci Smelter of Phelps Dodge Corporation at Morenci, Arizona. Met. Trans. JOM 1949, 185, 1–14. [Google Scholar]
- Atlas Copco. Viper for the Copper King. Min. Constr. 2004, 3, 13–14. [Google Scholar]
- Caterpillar. Caterpillar Performance Handbook, 46th ed.; Caterpillar: Peoria, IL, USA, 2016. [Google Scholar]
- Dyno Nobel. Blasting and Explosives Quick Reference Guide 2010. Available online: https://www.leg.state.mn.us/docs/2015/other/150681/PFEISref_1/Dyno%20Nobel%202010.pdf (accessed on 21 November 2018).
- AusIMM. Cost Estimation Handbook, 2nd ed.; Australasian Institute of Mining and Metallurgy: Carlton, VIC, Australia, 2012; ISBN 192152278X. [Google Scholar]
- Salama, A.; Greberg, B.; Skawina, B.; Gustafson, A. Analyzing energy consumption and gas emissions of loading equipment in underground mining. CIM J. 2015, 6, 179–188. [Google Scholar] [CrossRef]
- Golder Associates. Pre-Feasibility Block Cave Mine Design—Mitschell Deposit; Golder Associates: Burnaby, UK, 2012. [Google Scholar]
- Bell, G.A. Leaching Practice and Costs at the New Cornelia Mines of the Calumet & Arizona Mining Co.; Ajo, Ariz. IC 6303; Department of Commerce; United States Bureau of Mines: Washington, DC, USA, 1930.
- Ahlness, J.K.; Pojar, M.G. Situ Copper Leaching in the United States. Case Histories of Operations; IC 8961; U.S. Department of the Interior; Bureau of Mines: Washington, DC, USA, 1983.
- McMahon, A.D. Copper. A Materials Survey; IC 8225, Department of the Interior; U.S. Department of the Interior; Bureau of Mines: Washington, DC, USA, 1964.
- Schlitt, W.J.; Richards, K.J. Chemical aspects of copper cementation. In Solution Mining Symposium 1974; Aplan, F.F., McKinney, W.A., Pernichele, A.D., Eds.; AIME: New York, NY, USA, 1974. [Google Scholar]
- Norgate, T.; Rankin, W.J. Life Cycle Assessment of Copper and Nickel Production. In Proceedings of the MINPREX 2000, Melbourne, Australia, 11–13 September 2000; pp. 133–138. [Google Scholar]
- Honeyman, P.D.I. Metallurgy of copper: Reverberatory tonnages reach 1500 per day; Waste-heat boiler installations improved. Min. Metall. 1939, 20, 19–20. [Google Scholar]
- Skovronek, H.S.; EPA. Environmental Considerations of Selected Energy Conserving Manufacturing Process Options. Volume XIV Primary Copper Industry; Industrial Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency: Cincinnati, OH, USA, 1976.
- MIM. Environmental Report; M.I.M. Holdings Ltd.: Brisbane, Australia, 1999. [Google Scholar]
- Kennedy, B.A. Surface Mining, 2nd ed.; Society for Mining, Metallurgy, and Exploration: Littleton, CO, USA, 1990; ISBN 0-87335-102-9. [Google Scholar]
- Yellishetty, M.; Ranjith, P.G.; Tharumarajah, A. Iron ore and steel production trends and material flows in the world: Is this really sustainable? Resour. Conserv. Recycl. 2010, 54, 1084–1094. [Google Scholar] [CrossRef]
- Kunene, M.C. Life Cycle Assessment of the Production of Xanthate Salts and of Their Application for ARD Mitigation. Master’s Thesis, University of Cape Town, Cape Town, South Africa, 2014. [Google Scholar]
- Wernet, G.; Papadokonstantakis, S.; Hellweg, S.; Hungerbuhler, K. Bridging data gaps in environmental assessments: Modeling impacts of fine and basic chemical production. Green Chem. 2009, 11, 1826–1831. [Google Scholar] [CrossRef]
- Coursol, P.; Mackey, J.P.; Dìaz, C.M. Energy Consumption in Copper Sulphide Smelting. Proc. Copp. 2010, 2, 649–668. [Google Scholar]
- Bravard, J.C.; Portal, C. Energy Expenditures Associated with the Production and Recycle of Metals; Technical Report ORNL-MIT-132; Oak Ridge Station, School of Chemical Engineering Practice, Massachusetts Institute of Technology: Cambridge, MA, USA, 1971. [Google Scholar]
- EPA. Environmental Considerations of Selected Energy Conserving Manufacturing Process Options. Volume XIV Primary Copper Industry; Environmental Protection Agency: Cincinnati, OH, USA, 1976.
- Guilford, M.C.; Hall, C.A.S.; O’Connor, P.; Cleveland, C.J. A New Long Term Assessment of Energy Return on Investment (EROI) for U.S. Oil and Gas Discovery and Production. Sustainability 2011, 3, 1866–1887. [Google Scholar] [CrossRef] [Green Version]
- Pelletier, N.; Ibarburu, M.; Xin, H. Comparison of the environmental footprint of the egg industry in the United States in 1960 and 2010. Poult. Sci. 2014, 93, 241–255. [Google Scholar] [CrossRef] [PubMed]
- Verein Deutscher Ingenieure (VDI). VDI 4600 Part I—Cumulative Energy Demand. Examples; (VDI 4600 Blatt 1); Beuth Verlag: Berlin, Germany, 2015. [Google Scholar]
- EIA. Table 8.1. Average Operating Heat Rate for Selected Energy Sources: 2008 through 2018. Available online: https://www.eia.gov/electricity/annual/html/epa_08_01.html (accessed on 15 January 2020).
- NCA. Steam-Electric Plant Factors. 1971 Edition; National Coal Association (NCA): Washington, DC, USA, 1972.
- Ayres, R.U.; Ayres, L.W.; Warr, B. Exergy, Power and Work in the Us Economy, 1900–1998; Working Paper; Center for Management of Environmental Resources (CMER): Fontainebleau, France, 2002.
- USGS; Bureau of Mines. Minerals Yearbook. Volume I.—Metals and Minerals. Years 1932–2015. Available online: https://www.usgs.gov/centers/nmic/minerals-yearbook-metals-and-minerals (accessed on 14 February 2020).
- Kelly, T.D.; Matos, G.R. Historical Statistics for Mineral and Material Commodities in the United States; U.S. Geological Survey Data Series 140. 2014. Available online: https://www.usgs.gov/centers/nmic/historical-statistics-mineral-and-material-commodities-united-states (accessed on 14 February 2020).
- Kuklis, A. Molybdenum. In Minerals Yearbook Metals, Minerals and Fuels 1972; U.S. Bureau of Mines, Ed.; U. S. Bureau of Mines: Washington, DC, USA, 1972. [Google Scholar]
- Polyak, D.E. Molybdenum. In 2007 Minerals Yearbook; USGS, Ed.; U.S. Department of the Interior; U.S. Geological Survey: Reston, VA, USA, 2010; pp. 50.1–50.12. [Google Scholar]
- Polyak, D.E. Molybdenum. In 2015 Minerals Yearbook; USGS, Ed.; U.S. Department of the Interior; U.S. Geological Survey: Reston, VA, USA, 2016; pp. 50.1–50.12. [Google Scholar]
- George, M.W. Gold. In 2015 Minerals Yearbook; USGS, Ed.; U.S. Department of the Interior; U.S. Geological Survey: Reston, VA, USA, 2016. [Google Scholar]
- Butterman, W.C.; Hillard, H.E. Silver; Mineral Commodity Profiles; U.S. Department of the Interior; U.S. Geological Survey: Reston, VA, USA, 2004.
- Sverdrup, H.U.; Olafsdottir, A.H.; Ragnarsdottir, K.V. On the long-term sustainability of copper, zinc and lead supply, using a system dynamics model. Resour. Conserv. Recycl. 2019, 4, 100007. [Google Scholar] [CrossRef]
1930 | 1970 | 2010 | |
---|---|---|---|
Ore grade in% | 1.7 | 1.3 | 0.7 |
CED in GJ-eq/t Cu cathode | 70 | 53 | 69 |
GWP in t CO2-eq/t Cu cathode | 5.7 | 4.2 | 4.5 |
Cu (Economic) | Cu (Physical) | Sulphuric Acid (t/t Cu) | ||
---|---|---|---|---|
1930s | ||||
US | Mining & processing | 0.94 | 0.99 | - |
Metallurgy | 0.95 | 1 | ||
1970s | ||||
US | Mining & processing | 0.91 | 0.96 | 0.5 |
Metallurgy | 0.95 | 1 | ||
2010s | ||||
US | Mining & processing | 0.80 | 0.97 | 1.8 |
Metallurgy | 0.94 | 1 | ||
World | Mining & processing | 0.72 | 0.86 | 2.2 |
Metallurgy | 0.76 | 0.94 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rötzer, N.; Schmidt, M. Historical, Current, and Future Energy Demand from Global Copper Production and Its Impact on Climate Change. Resources 2020, 9, 44. https://doi.org/10.3390/resources9040044
Rötzer N, Schmidt M. Historical, Current, and Future Energy Demand from Global Copper Production and Its Impact on Climate Change. Resources. 2020; 9(4):44. https://doi.org/10.3390/resources9040044
Chicago/Turabian StyleRötzer, Nadine, and Mario Schmidt. 2020. "Historical, Current, and Future Energy Demand from Global Copper Production and Its Impact on Climate Change" Resources 9, no. 4: 44. https://doi.org/10.3390/resources9040044
APA StyleRötzer, N., & Schmidt, M. (2020). Historical, Current, and Future Energy Demand from Global Copper Production and Its Impact on Climate Change. Resources, 9(4), 44. https://doi.org/10.3390/resources9040044