Rill Erosion and Soil Quality in Forest and Deforested Ecosystems with Different Morphological Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Analysis
2.3. The Experimental Device and Procedure
2.4. Measurement of Hydraulic Parameters and Rill Detachment Capacity
- -
- h = flow width (0.2 m in this study)
- -
- p = flow depth [m]
- -
- ρ = water density [kg m−3]
- -
- g = gravity acceleration [m s−2]
- -
- S = slope gradient [m m−1]
- -
- θ = slope gradient [°] of the flume.
2.5. Statistical Analysis
3. Results
3.1. Spatial Variations of Rill Detachment Capacity and Associations with Soil Quality Indicators
3.2. Modeling the Rill Detachment Capacity and Erodibility
4. Discussion
4.1. Spatial Variations of Rill Detachment Capacity and Associations with Soil Quality Indicators
4.2. Modeling the Soil Detachment Capacity and Rill Erodibility
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nosrati, K.; Collins, A.L. Fingerprinting the contribution of quarrying to fine-grained bed sediment in a mountainous catchment. Iran River Res. Appl. 2019, 35, 290–300. [Google Scholar] [CrossRef]
- Valderrama, L.; Contreras-Reyes, J.E.; Carrasco, R. Ecological impact of forest fires and subsequent restoration in Chile. Resources 2018, 7, 26. [Google Scholar] [CrossRef] [Green Version]
- Bunemann, E.K.; Bongiorno, G.; Bai, Z.G.; Creamer, R.; Deyn, G.B.; de Goede, R.G.M.; de Fleskens, L.; Geissen, V.; Kuijper, T.W.M.; Mäder, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Singh, N.; Parida, B.R.; Charakborty, J.S.; Patel, N.R. Net Ecosystem Exchange of CO2 in Deciduous Pine Forest of Lower Western Himalaya, India. Resources 2019, 8, 98. [Google Scholar] [CrossRef] [Green Version]
- Mullan, D. Soil erosion under the impacts of future climate change: Assessing the statistical significance of future changes and the potential on-site and off-site problems. Catena 2013, 109, 234–246. [Google Scholar] [CrossRef]
- De Vente, J.; Poesen, J. Predicting soil erosion and sediment yield at the basin scale: Scale issues and semi-quantitative models. Earth-Sci. Rev. 2005, 1–2, 95–125. [Google Scholar] [CrossRef]
- Cherubin, M.R.; Tormena, C.A.; Karlen, D.L. Soil Quality Evaluation Using the Soil Management Assessment Framework (SMAF) in Brazilian Oxisols with Contrasting Texture. Rev. Bras. Cienc. Solo 2017, 41, 1806–9657. [Google Scholar] [CrossRef] [Green Version]
- Khormali, F.; Ajami, M.; Ayoubi, S.; Srinivasarao, C.; Wani, S.P. Role of deforestation and hillslope position on soil quality attributes of loess-derived soils in Golestan province, Iran. Agric. Ecosyst. Environ. 2009, 134, 178–189. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Zema, D.A.; Plaza-Álvarez, P.A.; Zupanc, V.; Baartman, J.; Sagra, J.; González-Romero, J.; Moya, D.; de las Heras, J. Effects of Different Land Uses (Abandoned Farmland, Intensive Agriculture and Forest) on Soil Hydrological Properties in Southern Spain. Water 2019, 11, 503. [Google Scholar] [CrossRef] [Green Version]
- Shabanpour, M.; Daneshyar, M.; Parhizkar, M.; Lucas-Borja, M.E.; Zema, D.A. Influence of crops on soil properties in agricultural lands of northern Iran. Sci. Total Environ. 2020, 711, 134694. [Google Scholar] [CrossRef]
- Jamala, G.Y.; Oke, D.O. Soil Profile Characteristics as affected by Land Use Systems in The Southeastern Adamawa State, Nigeria. J. Agric. Vet. Sci. 2013, 6, 4–11. [Google Scholar] [CrossRef]
- Ellison, W.D. Soil erosion studies: Part I. Agric. Eng. 1947, 28, 145–146. [Google Scholar]
- Wang, B.; Zhang, G.H.; Shi, Y.Y.; Zhang, X.C. Soil detachment by overland flow under different vegetation restoration models in the Loess Plateau of China. Catena 2014, 116, 51–59. [Google Scholar] [CrossRef]
- Li, T.Y.; Li, S.; Liang, C.; He, B.H.; Bush, R.T. Erosion vulnerability of sandy clay loam soil in Southwest China: Modeling soil detachment capacity by flume simulation. Catena 2019, 178, 90–99. [Google Scholar] [CrossRef]
- Owoputi, L.; Stolte, W. Soil detachment in the physically based soil erosion process: A review. Trans. ASAE 1995, 38, 1099–1110. [Google Scholar]
- Wang, B.; Zhang, G.H.; Zhang, X.C.; Li, Z.W.; Su, Z.L.; Yi, T.; Shi, Y.Y. Effects of near soil surface characteristics on soil detachment by overland flow in a natural succession grassland. Soil Sci. Soc. Am. J. 2014, 78, 589–597. [Google Scholar] [CrossRef] [Green Version]
- Poesen, J.; Nachtergaele, J.; Verstraeten, G.; Valentin, C. Gully erosion and environmental change: Importance and research needs. Catena 2003, 50, 91–133. [Google Scholar] [CrossRef]
- Chaplot, V. Impact of terrain attributes, parent material and soil types on gully erosion. Geomorphology 2013, 186, 1–11. [Google Scholar] [CrossRef]
- Foster, G.R. Modeling the erosion process. In Hydrologic Modeling of Small Watersheds; Haan, C.T., Ed.; ASAE: St. Joseph, MI, USA, 1982; pp. 296–380. [Google Scholar]
- Knapen, A.; Poesen, J.; Govers, G.; Gyssels, G.; Nachtergaele, J. Resistance of soils to concentrated flow erosion: A review. Earth-Sci. Rev. 2007, 80, 75–109. [Google Scholar] [CrossRef]
- Wang, J.G.; Li, Z.X.; Cai, C.F.; Yang, W.; Ma, R.M.; Zhang, G.B. Predicting physical equations of soil detachment by simulated concentrated flow in Ultisols (subtropical China). Earth Surf. Process. Landf. 2012, 37, 633–641. [Google Scholar] [CrossRef]
- Wang, J.; Feng, S.; Ni, S.; Wen, H.; Cai, C.; Guo, Z. Soil detachment by overland flow on hillslopes with permanent gullies in the Granite area of southeast China. Catena 2019, 183, 104235. [Google Scholar] [CrossRef]
- Geng, R.; Zhang, G.H.; Ma, Q.H.; Wang, L.J. Soil resistance to runoff on steep croplands in Eastern China. Catena 2017, 152, 18–28. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Candel, D.; López-Serrano, F.R.; Andrés, M.; Bastida, F. Altituderelated factors but not Pinus community exert a dominant role over chemical and microbiological properties of a Mediterranean 706 humid soil. Eur. J. Soil Sci. 2012, 63, 541–549. [Google Scholar] [CrossRef]
- Zhang, G.H.; Liu, B.Y.; Liu, G.B.; He, X.W.; Nearing, M.A. Detachment of undisturbed soil by shallow flow. Soil Sci. Soc. Am. J. 2003, 67, 713–719. [Google Scholar] [CrossRef]
- Zhang, G.H.; Liu, G.B.; Tang, K.M.; Zhang, X.C. Flow detachment of soils under different land uses in the Loess Plateau of China. Trans. ASABE 2008, 51, 883–889. [Google Scholar] [CrossRef]
- Parhizkar, M.; Shabanpour, M.; Khaledian, M.; Cerdà, A.; Rose, C.W.; Asadi, H.; Lucas-Borja, M.E.; Zema, D.A. Assessing and Modeling Soil Detachment Capacity by Overland Flow in Forest and Woodland of Northern Iran. Forests 2020, 11, 65. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.W.; Zhang, G.H.; Geng, R.; Wang, H. Spatial heterogeneity of soil detachment capacity by overland flow at a hillslope with ephemeral gullies on the Loess Plateau. Geomorphology 2015, 248, 264–272. [Google Scholar] [CrossRef]
- Pourbabaei, H.; Naghi Adel, M. Plant ecological groups and soil properties of common Hazel (Corylus avellana L.) stand in Safagashteh forest, north of Iran. Folia For. Pol. 2015, 57, 245–250. [Google Scholar] [CrossRef] [Green Version]
- Rezaei, H.; Jafarzadeh, A.A.; Alijanpour, A.; Shahbazi, F.; Khalil Valizadeh, K. Effect of Slope Position on Soil Properties and Types Along an Elevation Gradient of Arasbaran Forest, Iran. Int. J. Adv. Sci. Eng. Inf. Technol. 2015, 5, 449–456. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.W.; Zhang, G.H.; Geng, R.; Wang, H.; Zhang, X. Land use impacts on soil detachment capacity by overland flow in the Loess Plateau, China. Catena 2015, 124, 9–17. [Google Scholar] [CrossRef]
- Zhang, G.H.; Tang, K.M.; Zhang, X.C. Temporal variation in soil detachment under different land uses in the Loess Plateau of China. Earth Surf. Process. Landf. 2009, 34, 1302–1309. [Google Scholar] [CrossRef]
- Hao, H.; Di, H.; Jiao, X.; Wang, J.; Guo, Z.; Shi, Z. Fine roots benefit soil physical properties key to mitigate soil detachment capacity following the restoration of eroded land. Plant Soil 2020, 446, 487–501. [Google Scholar] [CrossRef]
- Dube, H.B.; Mutema, M.; Muchaonyerwa, P.; Poesen, J.; Chaplot, V. A global analysis of the morphology of linear erosion features. Catena 2020, 190, 104542. [Google Scholar] [CrossRef]
- Kelarestaghi, A.; Ahmadi, H.; Jafari, M. Land use changes detection and spatial distribution using digital and satellite data, case study: Farim drainage basin, Northern of Iran. Desert 2006, 11, 33–47. [Google Scholar]
- Gholoubi, A.; Emami, H.; Alizadeh, A.; Azadi, R. Long term effects of deforestation on soil attributes: Case study, Northern Iran. Casp. J. Environ. Sci. 2019, 17, 73–81. [Google Scholar]
- Bahrami, A.; Emadodin, I.; Ranjbar Atashi, M.; Bork, H.R. Land-use change and soil degradation: A case study, North of Iran. Agric. Biol. J. N. Am. 2010, 4, 600–605. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Islamic Republic of Iran Meteorological Organization. Annual Rainfall Report. 2016. Available online: www.irimo.ir (accessed on 20 September 2019).
- USDA. Soil Survey Staff, Keys to Soil Taxonomy, 11th ed.; U.S. Dep. Agric., Soil Conserv. Serv.: Washington, DC, USA, 2010.
- Norouzi, M.; Ramezanpour, H. Effect of fire on soil nutrient availability in forests of Guilan, north of Iran. Carpathian J. Earth Environ. Sci. 2013, 8, 157–170. [Google Scholar]
- Walkley, A.; Black, I.A. An examination 807 of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Kemper, W.D.; Rosenau, R.C. Aggregate 672 stability and size distribution. In Method of Soil Analysis, Part 1, Physical and Mineralogical Methods; Agronomy Monographs 9; Klute, A., Ed.; American Society of Agronomy: Madison, WI, USA, 1986; pp. 425–442. [Google Scholar]
- Anderson, J.P.E. Soil respiration. In Methods of Soil Analysis, Part 2; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Soil Science Society of America: Madison, WI, USA, 1982; pp. 831–872. [Google Scholar]
- Sparks, D. Methods of Soil Analysis, Part 3, Chemical Methods; SSSA Book Series No. 5; Soil Science Society of America: Madison, WI, USA, 1996. [Google Scholar]
- Gee, G.W.; Bauder, J.W. Particle-Size Analysis. In Methods of Soil Analysis, Part 1. Physical and Minerological Methods; Klute, A., Ed.; ASA-SSSA: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- Cassel, D.K.; Nielsen, D.R. Field Capacity and Available Water Capacity. Methods Soil Anal. Part 1 Mineral. Methods 1986, 5, 635–662. [Google Scholar]
- Asadi, H.; Moussavi, A.; Ghadiri, H.; Rose, C.W. Flow-driven soil erosion processes and the size selectivity of sediment. J. Hydrol. 2011, 406, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Raei, B.; Asadi, H.; Moussavi, A.; Ghadiri, H. A study of initial motion of soil aggregates in comparison with sand particles of various sizes. Catena 2015, 127, 279–286. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.H.; Luo, R.T.; Cao, Y.; Shen, R.C.; Zhang, X.C. Correction factor to dye-measured flow velocity under varying water and sediment discharges. J. Hydrol. 2010, 389, 205–213. [Google Scholar] [CrossRef]
- Abrahams, A.D.; Parsons, A.J.; Luk, S.H. Field measurement of the velocity of overland flow using dye tracing. Earth Surf. Process. Landf. 1985, 11, 653–657. [Google Scholar] [CrossRef]
- Nearing, M.A.; Bradford, J.M.; Parker, S.C. Soil detachment by shallow flow at low slopes. Soil Sci. Soc. Am. J. 1991, 55, 339–344. [Google Scholar] [CrossRef]
- Yang, C.T. Unit stream power and sediment transport. J. Hydrol. Div. ASCE 1972, 98, 1805–1826. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I-a discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Van Liew, M.W.; Garbrecht, J. Hydrologic simulation of the Little Washita River experimental watershed using SWAT. J. Am. Water Resour. Assoc. 2003, 39, 413–426. [Google Scholar] [CrossRef]
- Singh, J.; Knapp, H.V.; Demissie, M. Hydrologic Modeling of the Iroquois River Watershed Using HSPF and SWAT, ISWS CR 2004–2008, Champaign, Ill.: Illinois State Water Survey. 2004. Available online: http://www.sws.uiuc.edu/pubdoc/CR/ISWSCR2004-08.pdf (accessed on 14 February 2018).
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Wang, D.D.; Wang, Z.L.; Shen, N.; Chen, H. Modeling soil detachment capacity by rill flow using hydraulic parameters. J. Hydrol. 2016, 535, 473–479. [Google Scholar] [CrossRef]
- Nearing, M.A.; Foster, G.R.; Lane, L.J.; Finkner, S.C. A process-based soil erosion model for USDA-Water Erosion Prediction Project technology. Trans. ASAE 1989, 32, 1587–1593. [Google Scholar] [CrossRef]
- Massy, W.F. Principal Components Regression in Exploratory Statistical Research. J. Am. Stat. Assoc. 1965, 60, 234–256. [Google Scholar] [CrossRef]
- Wold, H. Soft modelling by latent variables; the nonlinear iterative partial least squares approach. In Perspectives in Probability and Statistics; Papers in honour of M.S. Barlett; Gani, J., Ed.; Academic Press: Cambridge, MA, USA, 1975; pp. 117–142. [Google Scholar]
- Carrascal, L.M.; Galván, I.; Gordo, O. Partial least squares regression as an alternative to current regression methods used in ecology. Oikos 2009, 118, 681–690. [Google Scholar] [CrossRef]
- Rodgers, J.L.; Nicewander, W.A. Thirteen ways to look at the correlation coefficient. Am. Stat. 1988, 42, 59–66. [Google Scholar] [CrossRef]
- Martinez-Mena, M.; Lopez, J.; Almagro, M.; Boix-Fayos, V.; Albaladejo, J. Effect of water erosion and cultivation on the soil carbon stock in a semiarid area of south714 east Spain. Soil Till. Res. 2008, 99, 119–129. [Google Scholar] [CrossRef]
- Girmay, G.; Sing, B.R.; Nyssen, J.; Borrosen, T. Runoff and sediment-associated nutrient losses under different land uses in Tigray, Northern Ethiopia. J. Hydrol. 2009, 376, 70–80. [Google Scholar] [CrossRef]
- Abdinejad, P.; Feiznia, S.; Pyrowan, H.R.; Fayazi, F.; Tbakh Shabani, A. Assessing the effect of soil texture and slope on sediment yield of Marl units using a portable rainfall simulator. J. Am. Sci. 2011, 7, 617–624. [Google Scholar]
- Fang, N.F.; Shi, Z.H.; Li, L.; Guo, Z.L.; Liu, Q.J.; Ai, L. The effects of rainfall regimes and land use changes on runoff and soil loss in a small mountainous watershed. Catena 2012, 99, 1–8. [Google Scholar] [CrossRef]
- Ciampalini, R.; Torri, D. Detachment of soil particles by shallow flow: Sampling methodology and observations. Catena 1988, 32, 37–53. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, G.H.; Yang, Y.F.; Li, F.F.; Liu, J.X. Response of soil detachment capacity to plant root and soil properties in typical grasslands on the Loess Plateau. Agric. Ecosyst. Environ. 2018, 266, 68–75. [Google Scholar] [CrossRef]
- Vaezi, A.R.; Eslami, S.F.; Keesstra, S. Interrill erodibility in relation to aggregate size class in a semi-arid soil under simulated rainfalls. Catena 2018, 167, 385–398. [Google Scholar] [CrossRef]
- Sheridan, G.J.; So, H.B.; Loch, R.J.; Pocknee, C.; Walker, C.M. Use of laboratory-scale rill and interill erodibility measurements for the prediction of hillslope-scale erosion on rehabilitated coal mine soils and overburdens. Soil Res. 2000, 38, 285–298. [Google Scholar] [CrossRef]
- Pathak, P.; Sahrawat, K.L.; Rego, T.J.; Wani, S.P. Measurable biophysical indicators for impact assessment: Changes in soil quality. In Natural Resource Management in Agriculture, Methods for Assessing Economic and Environmental Impacts; Shiferaw, B., Freeman, H.A., Swinton, S.M., Eds.; ICRISAT: Patancheru, India, 2004. [Google Scholar]
- Quideau, S.A.; Chadwick, O.A.; Benesi, A.; Graham, R.C.; Anderson, M.A. A direct link between forestland vegetation type and soil organic matter composition. Geoderma 2001, 104, 41–60. [Google Scholar] [CrossRef]
- Ernst, W.H.O. Vegetation, organic matter and soil quality. In Developments in Soil Science; Elsevier: Amsterdam, The Netherlands, 2004; Volume 29, pp. 41–98. [Google Scholar]
- An, S.; Mentler, A.; Mayer, H.; Blum, W.E. Soil aggregation, aggregate stability, organic carbon and nitrogen in different soil aggregate fractions under forestland and shrub vegetation on the Loess Plateau, China. Catena 2010, 81, 226–233. [Google Scholar] [CrossRef]
- Reicosky, D.C.; Forcella, F. Cover crop and soil quality interactions in agroecosystems. J. Soil Water Conserv. 1998, 53, 224–229. [Google Scholar]
- De Baets, S.; Poesen, J.; Gyssels, G.; Knapen, A. Effects of grass roots on the erodibility of topsoils during concentrated flow. Geomorphology 2006, 76, 54–67. [Google Scholar] [CrossRef]
- De Baets, S.; Poesen, J.; Knapen, A.; Galindo, P. Impact of root architecture on the 23 erosion-reducing potential of roots during concentrated flow. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Group 2007, 32, 1323–1345. [Google Scholar] [CrossRef]
- Prosser, I.P.; Dietrich, W.E.; Stevenson, J. Flow resistance and sediment transport by concentrated overland flow in a grassland valley. Geomorphology 1995, 13, 71–86. [Google Scholar] [CrossRef]
- Cerdà, A.; Doerr, S.H. Soil wettability, runoff and erodibility of major dry- Mediterranean land use types on calcareous soils. Hydrol. Process. Int. J. 2007, 21, 2325–2336. [Google Scholar] [CrossRef]
- Caravaca, F.; Lax, A.; Albaladejo, J. Aggregate stability and carbon characteristics of particle-size fractions in cultivated and forested soils of semiarid Spain. Soil Till. Res. 2004, 78, 83–90. [Google Scholar] [CrossRef]
- McDonald, M.A.; Healey, J.R.; Stevens, P.A. The effects of secondary forest clearance and subsequent land-use on erosion losses and soil properties in the Blue Mountains of Jamaica. Agric. Ecosyst. Environ. 2002, 92, 1–19. [Google Scholar] [CrossRef]
- Lemenih, M.; Karltun, E.; Olsson, M. Assessing soil chemical and physical property responses to deforestation and subsequent cultivation in smallholders farming system in Ethiopia. Agric. Ecosyst. Environ. 2005, 105, 373–386. [Google Scholar] [CrossRef]
- Shepherd, T.G.; Saggar Newman, R.H.; Ross, C.W.; Dando, J.L. Tillage induced changes in soil structure and soil organic matter fractions. Aust. J. Soil Res. 2001, 39, 465–489. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B. Limited effect of organic matter on soil available water capacity. Eur. J. Soil Sci. 2017, 69, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Rawls, W.J.; Pachepsky, Y.A.; Ritchie, J.C.; Sobecki, T.M.; Bloodworth, H. Effect of soil organic carbon on soil water retention. Geoderma 2003, 116, 61–76. [Google Scholar] [CrossRef]
- Wolf, B.; Snyder, G.H. Sustainable Soils: The Place of Organic Matter in Sustaining Soils and Their Productivity; Haworth Press: New York, NY, USA, 2003; p. 352. [Google Scholar]
- Bombino, G.; Zema, D.A.; Denisi, P.; Lucas-Borja, M.E.; Labate, A.; Zimbone, S.M. Assessment of riparian vegetation characteristics in Mediterranean headwaters regulated by check dams using multivariate statistical techniques. Sci. Total Environ. 2019, 657, 597–607. [Google Scholar] [CrossRef]
- Zema, D.A.; Bombino, G.; Denisi, P.; Lucas-Borja, M.E.; Zimbone, S.M. Evaluating the effects of check dams on channel geometry, bed sediment size and riparian vegetation in Mediterranean mountain torrents. Sci. Total Environ. 2018, 642, 327–340. [Google Scholar] [CrossRef] [PubMed]
- Nael, M.; Khademi, H.; Hajabbasi, M.A. Response of soil quality indicators and their spatial variability to land degradation in central Iran. Appl. Soil Ecol. 2004, 27, 221–2320. [Google Scholar] [CrossRef]
- Islam, K.R.; Weil, R.R. Land use effects on soil quality in a tropical forest ecosystem of Bangladesh. Agric. Ecosyst. Environ. 2000, 79, 9–16. [Google Scholar] [CrossRef]
- Kiani, F.; Jalalian, A.; Pashaee, A.; Khademi, H. Effect of deforestation on selected soil quality attributes in loess-derived landforms of Golestan province, northern Iran. In Proceedings of the 4th International Iran Russia Conference, New York, NY, USA, 15 January 2004; pp. 546–550. [Google Scholar]
- Giesler, R.; Esberg, C.; Lagerström, A.; Graae, B.J. Phosphorus availability and microbial respiration across different tundra vegetation types. Biogeochemistry 2012, 108, 429–445. [Google Scholar] [CrossRef]
- Tardy, V.; Mathieu, O.; Lévêque, J.; Terrat, S.; Chabbi, A.; Lemanceau, P.; Maron, P.A. Stability of soil microbial structure and activity depends on microbial diversity. Environ. Microbiol. Rep. 2014, 6, 173–183. [Google Scholar] [CrossRef]
- Mganga, K.; Razavi, S.B.; Kuzyakov, Y. Land use affects soil biochemical properties in Mt. Kilimanjaro region. Catena 2016, 141, 22–29. [Google Scholar] [CrossRef]
- Cerdà, A. The influence of aspect and vegetation on seasonal changes in erosion under rainfall simulation on a clay soil in Spain. Can. J. Soil Sci. 1998, 78, 321–330. [Google Scholar] [CrossRef] [Green Version]
- Petersen, S.L.; Stringham, T.K. Infiltration, Runoff, and Sediment Yield in Response to Western Juniper Encroachment in Southeast Oregon. Rangel. Ecol. Manag. 2008, 61, 74–81. [Google Scholar] [CrossRef]
- Carter, M.R.; Gregorich, E.G.; Angers, D.A.; Donald, R.G.; Bolinder, M.A. Organic C and N storage and organic C fractions in adjacent cultivated and forested soils of eastern Canada. Soil Till. Res. 1998, 47, 253–261. [Google Scholar] [CrossRef]
- Girmay, G.; Singh, B.R.; Mitiku, H.; Borresen, T.; Lal, R. Carbon stocks in Ethiopian soils in relation to land use and soil management. Land Degrad. Dev. 2008, 19, 351–367. [Google Scholar] [CrossRef]
- Sidari, M.; Ronzello, G.; Vecchio, G.; Muscolo, A. Influence of slope aspects on soil chemical and biochemical properties in a Pinus laricio forest ecosystem of Aspromonte (Southern Italy). Eur. J. Soil Biol. 2008, 44, 364–372. [Google Scholar] [CrossRef]
- Zema, D.A.; Nicotra, A.; Mateos, L.; Zimbone, S.M. Improvement of the irrigation performance in Water Users Associations integrating data envelopment analysis and multi-regression models. Agric. Water Manag. 2018, 205, 38–49. [Google Scholar] [CrossRef]
- García-Ruiz, J.M. The effects of land uses on soil erosion in Spain: A review. Catena 2010, 81, 1–11. [Google Scholar] [CrossRef]
- Knapen, A.; Poesen, J.; Govers, G.; De Baets, S. The effect of conservation tillage on runoff erosivity and soil erodibility during concentrated flow. Hydrol. Process. 2008, 22, 1497–1508. [Google Scholar] [CrossRef]
- Laflen, J.M.; Lane, J.L.; Foster, G.R. WEPP—A New Generation of Erosion Prediction Technology. J. Soil Water Conserv. 1991, 46, 34–38. [Google Scholar]
Soil Quality Indicators | Condition | ||||||
---|---|---|---|---|---|---|---|
D | F | ||||||
Aspect | |||||||
S | N | Mean Deforested | S | N | Mean Forest | ||
SaC (%) | Mean | 12.7 | 13.0 | 12.8 a | 18.8 | 19.1 | 18.9 b |
Std. Dev. | 0.41 | 0.41 | 0.44 | 0.48 | 0.48 | 0.49 | |
Mean south | 15.71 A | Std. Dev. south | 3.14 | ||||
Mean north | 16.05 B | Std. Dev. North | 3.12 | ||||
SiC (%) | Mean | 47.9 | 47.7 | 47.8 a | 47.1 | 46.9 | 47.0 b |
Std. Dev. | 0.46 | 0.46 | 0.46 | 0.37 | 0.26 | 0.32 | |
Mean south | 47.48 A | Std. Dev. south | 0.59 | ||||
Mean north | 47.28 A | Std. Dev. north | 0.54 | ||||
ClC (%) | Mean | 39.4 | 39.3 | 39.3 a | 34.2 | 34.0 | 34.1 b |
Std. Dev. | 0.22 | 0.19 | 0.21 | 0.35 | 0.39 | 0.36 | |
Mean south | 36.79 A | Std. Dev. south | 2.69 | ||||
Mean north | 36.65 A | Std. Dev. north | 2.70 | ||||
OM (%) | Mean | 1.85 | 2.09 | 1.94 a | 3.03 | 3.46 | 3.23 b |
Std. Dev. | 0.39 | 0.33 | 0.36 | 0.17 | 0.20 | 0.28 | |
Mean south | 2.40 A | Std. Dev. south | 0.68 | ||||
Mean north | 2.77 B | Std. Dev. north | 0.74 | ||||
BD (kg m−3) | Mean | 1571 | 1541 | 1554 a | 1384 | 1354 | 1374 b |
Std. Dev. | 25.3 | 84.6 | 61.7 | 60.9 | 49.3 | 59.6 | |
Mean south | 1475 A | Std. Dev. south | 104 | ||||
Mean north | 1453 A | Std. Dev. north | 115 | ||||
AS (%) | Mean | 0.63 | 0.75 | 0.69 a | 1.29 | 1.64 | 1.47 b |
Std. Dev. | 0.19 | 0.15 | 0.18 | 0.19 | 0.27 | 0.29 | |
Mean south | 0.96 A | Std. Dev. south | 0.38 | ||||
Mean north | 1.20 B | Std. Dev. north | 0.50 | ||||
CCE (%) | Mean | 2.62 | 2.41 | 2.51 a | 1.61 | 1.30 | 1.48 b |
Std. Dev. | 0.30 | 0.27 | 0.30 | 0.27 | 0.22 | 0.29 | |
Mean south | 2.11 A | Std. Dev. south | 1.88 | ||||
Mean north | 0.58 B | Std. Dev. north | 0.60 | ||||
SMR (g of CO2 per kg of soil) | Mean | 0.08 | 0.13 | 0.10 a | 0.19 | 0.22 | 0.21 b |
Std. Dev. | 0.02 | 0.02 | 0.03 | 0.02 | 0.01 | 0.02 | |
Mean south | 0.14 A | Std. Dev. south | 0.06 | ||||
Mean north | 0.17 B | Std. Dev. north | 0.05 | ||||
RWD (kg m−3) | Mean | 0.00 | 0.00 | 0.00 a | 0.56 | 0.65 | 0.60 b |
Std. Dev. | 0.00 | 0.00 | 0.00 | 0.11 | 0.11 | 0.11 | |
Mean south | 0.56 A | Std. Dev. south | 0.11 | ||||
Mean north | 0.63 B | Std. Dev. north | 0.11 | ||||
SP (%) | Mean | 40.7 | 41.8 | 41.4 a | 47.8 | 48.9 | 48.1 b |
Std. Dev. | 0.954 | 3.19 | 2.33 | 2.299 | 1.86 | 2.25 | |
Mean south | 44.32 A | Std. Dev. south | 3.91 | ||||
Mean north | 45.17 A | Std. Dev. north | 4.34 | ||||
AW (%) | Mean | 10.3 | 12.0 | 11.0 a | 13.7 | 15.0 | 14.5 b |
Std. Dev. | 2.21 | 1.28 | 1.93 | 1.61 | 2.14 | 2.15 | |
Mean south | 11.8 A | Std. Dev. south | 2.58 | ||||
Mean north | 13.7 B | Std. Dev. north | 2.51 |
Soil Property | OM | BD | RWD | AS | SaC | SiC | ClC | CCE | SMR | SP | AW | Dc |
---|---|---|---|---|---|---|---|---|---|---|---|---|
OM | 1.000 | −0.777 | 0.901 | 0.860 | 0.914 | −0.788 | −0.892 | −0.847 | 0.880 | 0.777 | 0.678 | −0.860 |
BD | 1.000 | −0.823 | −0.760 | −0.827 | 0.533 | 0.847 | 0.787 | −0.796 | −1.000 | −0.483 | 0.561 | |
RWD | 1.000 | 0.912 | 0.973 | −0.760 | −0.967 | −0.913 | 0.899 | 0.823 | 0.591 | −0.796 | ||
AS | 1.000 | 0.903 | −0.790 | −0.881 | −0.939 | 0.905 | 0.760 | 0.531 | −0.768 | |||
SaC | 1.000 | −0.794 | −0.991 | −0.910 | 0.907 | 0.827 | 0.642 | −0.840 | ||||
SiC | 1.000 | 0.708 | 0.798 | −0.719 | −0.533 | −0.531 | 0.880 | |||||
ClC | 1.000 | 0.889 | −0.901 | −0.847 | −0.632 | 0.787 | ||||||
CCE | 1.000 | −0.907 | −0.787 | −0.505 | 0.760 | |||||||
SMR | 1.000 | 0.796 | 0.669 | −0.759 | ||||||||
SP | 1.000 | 0.483 | −0.561 | |||||||||
AW | 1.000 | −0.662 | ||||||||||
Dc | 1.000 |
Soil Properties | PCR1 | PCR2 |
---|---|---|
OM | 0.939 | 0.121 |
BD | −0.874 | 0.424 |
RWD | 0.969 | −0.020 |
AS | 0.937 | 0.030 |
SaC | 0.980 | 0.026 |
SiC | −0.800 | −0.376 |
ClC | −0.967 | 0.050 |
CCE | −0.941 | 0.020 |
SMR | 0.948 | 0.046 |
SP | 0.874 | −0.424 |
AW | 0.666 | 0.477 |
Hillslope Characteristic | Power Regression Equation (5) | r2 | |
---|---|---|---|
Condition | Aspect | ||
Deforested | South | Dc = 0.947ω1.210 | 0.964 |
North | Dc = 0.950ω1.265 | 0.952 | |
Forested | South | Dc = 0.232ω1.066 | 0.943 |
North | Dc = 0.312ω1.305 | 0.938 |
Hillslope Characteristic | Linear Regression Equation (6) | Kr [s m−1] | τc [Pa] | r2 | |
---|---|---|---|---|---|
Condition | Aspect | ||||
Deforested | South | Dc = 0.0093 τ − 0.0289 | 0.0093 | 3.11 | 0.864 |
North | Dc = 0.0088 τ − 0.0299 | 0.0088 | 3.42 | 0.870 | |
Forested | South | Dc = 0.0030 τ − 0.0083 | 0.0030 | 2.74 | 0.874 |
North | Dc = 0.0027 τ − 0.0097 | 0.0027 | 3.57 | 0.875 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parhizkar, M.; Shabanpour, M.; Zema, D.A.; Lucas-Borja, M.E. Rill Erosion and Soil Quality in Forest and Deforested Ecosystems with Different Morphological Characteristics. Resources 2020, 9, 129. https://doi.org/10.3390/resources9110129
Parhizkar M, Shabanpour M, Zema DA, Lucas-Borja ME. Rill Erosion and Soil Quality in Forest and Deforested Ecosystems with Different Morphological Characteristics. Resources. 2020; 9(11):129. https://doi.org/10.3390/resources9110129
Chicago/Turabian StyleParhizkar, Misagh, Mahmood Shabanpour, Demetrio Antonio Zema, and Manuel Esteban Lucas-Borja. 2020. "Rill Erosion and Soil Quality in Forest and Deforested Ecosystems with Different Morphological Characteristics" Resources 9, no. 11: 129. https://doi.org/10.3390/resources9110129
APA StyleParhizkar, M., Shabanpour, M., Zema, D. A., & Lucas-Borja, M. E. (2020). Rill Erosion and Soil Quality in Forest and Deforested Ecosystems with Different Morphological Characteristics. Resources, 9(11), 129. https://doi.org/10.3390/resources9110129