Determinants of Intention to Adopt E-Government Services in Pakistan: An Imperative for Sustainable Development
Abstract
:1. Introduction
2. Literature Review
2.1. Overview of the Proposed Model
2.2. Support for Including Additional Constructs in the Context of Intention to Use e-Government
3. Hypothesis Development
3.1. Attitude
3.1.1. Performance Expectancy
3.1.2. Effort Expectancy
3.1.3. Perceived Risk
3.2. Subjective Norm
3.2.1. Mass Media
3.2.2. Family Influence
3.3. Perceived Behavioral Control
3.3.1. Facilitating Conditions
3.3.2. Self-Efficacy
3.4. Trust
Relational Bonds
4. Methodology
5. Results
5.1. Data Analysis
5.2. Measurement Model Evaluation
5.3. Structural Model Evaluation
6. Discussion
7. Conclusions and Future Recommendations
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Hashemi, S.; Monfaredi, K.; Masdari, M. Using cloud computing for e-government: Challenges and benefits. Int. J. Comput. Inf. Syst. Control Eng. 2013, 7, 596–603. [Google Scholar]
- United Nations. United Nations Reports, 2016; United Nations: New York, NY, USA, 2016. [Google Scholar]
- Larsson, H.; Grönlund, Å. Sustainable eGovernance? Practices, problems and beliefs about the future in Swedish eGov practice. Gov. Inf. Q. 2016, 33, 105–114. [Google Scholar] [CrossRef]
- Shareef, M.A.; Kumar, U.; Kumar, V.; Dwivedi, Y.K. Identifying critical factors for adoption of e-government. Electron. Gov. Int. J. 2009, 6, 70–96. [Google Scholar] [CrossRef]
- Shareef, M.A.; Kumar, V.; Kumar, U.; Dwivedi, Y.K. e-Government Adoption Model (GAM): Differing service maturity levels. Gov. Inf. Q. 2011, 28, 17–35. [Google Scholar] [CrossRef]
- Rana, N.P.; Dwivedi, Y.K.; Williams, M.D. A review and weight analysis of the predictors and linkages in electronic government adoption research. Int. J. Indian Cult. Bus. Manag. 2014, 8, 139–158. [Google Scholar] [CrossRef]
- Alcaide-Muñoz, L.; Rodríguez-Bolívar, M.P.; Cobo, M.J.; Herrera-Viedma, E. Analysing the scientific evolution of e-Government using a science mapping approach. Gov. Inf. Q. 2017, 34, 545–555. [Google Scholar] [CrossRef]
- Patel, H.; Jacobson, D. Factors Influencing Citizen Adoption of E-Government: A Review and Critical Assessment. In Proceedings of the ECIS, Galway, Ireland, 9–11 June 2008; pp. 1058–1069. [Google Scholar]
- Ebrahim, Z.; Irani, Z. E-government adoption: Architecture and barriers. Bus. Process Manag. J. 2005, 11, 589–611. [Google Scholar] [CrossRef]
- Karunasena, K.; Deng, H. Critical factors for evaluating the public value of e-government in Sri Lanka. Gov. Inf. Q. 2012, 29, 76–84. [Google Scholar] [CrossRef]
- Lindgren, I.; Jansson, G. Electronic services in the public sector: A conceptual framework. Gov. Inf. Q. 2013, 30, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Zuiderwijk, A.; Janssen, M.; Dwivedi, Y.K. Acceptance and use predictors of open data technologies: Drawing upon the unified theory of acceptance and use of technology. Gov. Inf. Q. 2015, 32, 429–440. [Google Scholar] [CrossRef] [Green Version]
- Carter, L.; Weerakkody, V.; Phillips, B.; Dwivedi, Y.K. Citizen adoption of e-government services: Exploring citizen perceptions of online services in the United States and United Kingdom. Inf. Syst. Manag. 2016, 33, 124–140. [Google Scholar] [CrossRef]
- Alzahrani, L.; Al-Karaghouli, W.; Weerakkody, V. Analysing the critical factors influencing trust in e-government adoption from citizens’ perspective: A systematic review and a conceptual framework. Int. Bus. Rev. 2017, 26, 164–175. [Google Scholar] [CrossRef]
- Gao, X.; Lee, J. E-government services and social media adoption: Experience of small local governments in Nebraska state. Gov. Inf. Q. 2017, 34, 627–634. [Google Scholar] [CrossRef]
- Santhanamery, T.; Ramayah, T. Trust in the System: The Mediating Effect of Perceived Usefulness of the E-Filing System. In User Centric E-Government; Springer: Berlin, Germany, 2018; pp. 89–103. [Google Scholar]
- United Nations. United Nations E-Government Survey Report, 2018; United Nations: New York, NY, USA, 2018. [Google Scholar]
- Layne, K.; Lee, J. Developing fully functional E-government: A four stage model. Gov. Inf. Q. 2001, 18, 122–136. [Google Scholar] [CrossRef]
- Bélanger, F.; Carter, L. Trust and risk in e-government adoption. J. Strateg. Inf. Syst. 2008, 17, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Carter, L.; Weerakkody, V. E-government adoption: A cultural comparison. Inf. Syst. Front. 2008, 10, 473–482. [Google Scholar] [CrossRef]
- Weerakkody, V.; Janssen, M.; Dwivedi, Y.K. Transformational change and business process reengineering (BPR): Lessons from the British and Dutch public sector. Gov. Inf. Q. 2011, 28, 320–328. [Google Scholar] [CrossRef]
- Colesca, S.E. Understanding trust in e-government. Eng. Econ. 2009, 63. [Google Scholar] [CrossRef]
- Bannister, F.; Connolly, R. The trouble with transparency: A critical review of openness in e-government. Policy Internet 2011, 3, 1–30. [Google Scholar] [CrossRef]
- Khasawneh, R.T.; Abu-Shanab, E.A. E-government and social media sites: The role and impact. World J. Comput. Appl. Technol. 2013, 1, 10–17. [Google Scholar]
- Weerakkody, V.; Irani, Z.; Lee, H.; Hindi, N.; Osman, I. Are UK citizens satisfied with e-government services? Identifying and testing antecedents of satisfaction. Inf. Syst. Manag. 2016, 33, 331–343. [Google Scholar] [CrossRef]
- Al-Samarraie, H.; Teng, B.K.; Alzahrani, A.I.; Alalwan, N. E-learning continuance satisfaction in higher education: A unified perspective from instructors and students. Stud. High. Educ. 2018, 43, 2003–2019. [Google Scholar] [CrossRef]
- Chopra, K.; Wallace, W.A. Trust in electronic environments. In Proceedings of the 36th Annual Hawaii International Conference on System Sciences, Big Island, HI, USA, 6–9 January 2003; p. 10. [Google Scholar]
- Alshehri, M.; Drew, S.; Alfarraj, O. A Comprehensive Analysis of E-government services adoption in Saudi Arabia: Obstacles and Challenges. Int. Adv. Comput. Sci. Appl. 2012, 3, 1–6. [Google Scholar] [CrossRef]
- Mahmood, M.; Osmani, M.; Sivarajah, U. The Role of Trust in E-government Adoption: A Systematic Literature Review. 2014. Available online: https://bura.brunel.ac.uk/handle/2438/9993 (accessed on 19 July 2019).
- Rana, N.P.; Dwivedi, Y.K.; Williams, M.D.; Weerakkody, V. Adoption of online public grievance redressal system in India: Toward developing a unified view. Comput. Hum. Behav. 2016, 59, 265–282. [Google Scholar] [CrossRef]
- Lin, N.-P.; Weng, J.C.; Hsieh, Y.-C. Relational bonds and customer’s trust and commitment-A study on the moderating effects of web site usage. Serv. Ind. J. 2003, 23, 103–124. [Google Scholar] [CrossRef]
- Horst, M.; Kuttschreuter, M.; Gutteling, J.M. Perceived usefulness, personal experiences, risk perception and trust as determinants of adoption of e-government services in The Netherlands. Comput. Hum. Behav. 2007, 23, 1838–1852. [Google Scholar] [CrossRef]
- AlAwadhi, S.; Morris, A. The use of the UTAUT model in the adoption of e-government services in Kuwait. In Proceedings of the 41st Annual Hawaii International Conference on System Sciences (HICSS 2008), Waikoloa, HI, USA, 7–10 January 2008; p. 219. [Google Scholar]
- Sang, S.; Lee, J.-D.; Lee, J. E-government adoption in ASEAN: The case of Cambodia. Internet Res. 2009, 19, 517–534. [Google Scholar] [CrossRef]
- Bwalya, K.J. Factors affecting adoption of e-government in Zambia. Electron. J. Inf. Syst. Dev. Ctries. 2009, 38, 1–13. [Google Scholar] [CrossRef]
- Lean, O.K.; Zailani, S.; Ramayah, T.; Fernando, Y. Factors influencing intention to use e-government services among citizens in Malaysia. Int. J. Inf. Manag. 2009, 29, 458–475. [Google Scholar] [CrossRef] [Green Version]
- Yonazi, J.; Sol, H.; Boonstra, A. Exploring issues underlying citizen adoption of e-government initiatives in developing countries: The case of Tanzania. In Proceedings of the 10th European Conference on E-Government: National Center for Taxation Studies University of Limerick, Limerick, Ireland, 17–18 June 2010; p. 425. [Google Scholar]
- Al-Shafi, S.; Weerakkody, V. Factors Affecting E-government Adoption in the State of Qatar. 2010. Available online: https://bura.brunel.ac.uk/handle/2438/4395 (accessed on 19 July 2019).
- Rokhman, A. e-Government adoption in developing countries; the case of Indonesia. J. Emerg. Trends Comput. Inf. Sci. 2011, 2, 228–236. [Google Scholar]
- Alshehri, M.; Drew, S.; AlGhamdi, R. Analysis of citizens acceptance for e-government services: Applying the UTAUT model. arXiv 2013, arXiv:1304.3157. [Google Scholar]
- Voutinioti, A. Determinants of user adoption of e-government services in Greece and the role of citizen service centres. Procedia Technol. 2013, 8, 238–244. [Google Scholar] [CrossRef]
- Kurfalı, M.; Arifoğlu, A.; Tokdemir, G.; Paçin, Y. Adoption of e-government services in Turkey. Comput. Hum. Behav. 2017, 66, 168–178. [Google Scholar] [CrossRef]
- Rana, N.P.; Dwivedi, Y.K.; Lal, B.; Williams, M.D.; Clement, M. Citizens’ adoption of an electronic government system: Towards a unified view. Inf. Syst. Front. 2017, 19, 549–568. [Google Scholar] [CrossRef]
- Fishbein, M.; Ajzen, I. Intention and Behavior: An Introduction to Theory and Research; Addison-Wesley: Reading, MA, USA, 1975. [Google Scholar]
- Moore, G.C.; Benbasat, I. Development of an instrument to measure the perceptions of adopting an information technology innovation. Inf. Syst. Res. 1991, 2, 192–222. [Google Scholar] [CrossRef]
- Tornatzky, L.G.; Klein, K.J. Innovation characteristics and innovation adoption-implementation: A meta-analysis of findings. IEEE Trans. Eng. Manag. 1982, EM-29, 28–45. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Rana, N.P.; Dwivedi, Y.K.; Lal, B.; Williams, M.D. Assessing Citizens‘ Adoption of a Transactional E-Government System: Validation of the Extended Decomposed Theory of Planned Behavior (DTPB). In Proceedings of the PACIS, Singapore, Singapore, 5–9 July 2015; p. 217. [Google Scholar]
- Wang, Y.S. Assessing e-commerce systems success: A respecification and validation of the DeLone and McLean model of IS success. Inf. Syst. J. 2008, 18, 529–557. [Google Scholar] [CrossRef]
- Wang, Y.S.; Wu, M.C.; Wang, H.Y. Investigating the determinants and age and gender differences in the acceptance of mobile learning. Br. J. Educ. Technol. 2009, 40, 92–118. [Google Scholar] [CrossRef]
- Taylor, S.; Todd, P. Decomposition and crossover effects in the theory of planned behavior: A study of consumer adoption intentions. Int. J. Res. Mark. 1995, 12, 137–155. [Google Scholar] [CrossRef]
- Lau, A.S. Strategies to encourage the adoption of G2C e-government services in Hong Kong. Electron. Gov. Int. J. 2004, 1, 273–292. [Google Scholar] [CrossRef]
- Lau, A.S.; Kwok, V.W. How e-government strategies influence e-commerce adoption by SMEs. Electron. Gov. Int. J. 2007, 4, 20–42. [Google Scholar] [CrossRef]
- Susanto, T.D.; Goodwin, R. User acceptance of SMS-based egovernment services. In Proceedings of the International Conference on Electronic Government, Delft, The Netherlands, 28 August–2 September 2011; pp. 75–87. [Google Scholar]
- Rana, N.P.; Dwivedi, Y.K.; Lal, B. Factors Influencing Citizen‘s Adoption of an E-Government System: Validation of the Decomposed Theory of Planned Behavior. In Proceedings of the UKAIS, Oxford, UK, 16–18 March 2015; p. 14. [Google Scholar]
- Almukhlifi, A.; Deng, H.; Kam, B. A conceptual framework for transparent public decision-making through e-government development in Saudi Arabia. In Proceedings of the 5th International Conference on Information Technology and Science; June 2017. Available online: https://www.researchgate.net/profile/Ayman_Almukhlifi/publication/330871571_A_Conceptual_Framework_for_Transparent_Public_Decision-Making_through_E-Government_Development_in_Saudi_Arabia/links/5c58ff91a6fdccd6b5e38dab/A-Conceptual-Framework-for-Transparent-Public-Decision-Making-through-E-Government-Development-in-Saudi-Arabia.pdf (accessed on 18 July 2019).
- Dwivedi, Y.K.; Rana, N.P.; Jeyaraj, A.; Clement, M.; Williams, M.D. Re-examining the unified theory of acceptance and use of technology (UTAUT): Towards a revised theoretical model. Inf. Syst. Front. 2017, 21, 719–743. [Google Scholar] [CrossRef]
- Xie, Q.; Song, W.; Peng, X.; Shabbir, M. Predictors for e-government adoption: integrating TAM, TPB, trust and perceived risk. Electron. Libr. 2017, 35, 2–20. [Google Scholar] [CrossRef]
- Chatfield, A.T.; Reddick, C.G. The role of policy entrepreneurs in open government data policy innovation diffusion: An analysis of Australian Federal and State Governments. Gov. Inf. Q. 2018, 35, 123–134. [Google Scholar] [CrossRef]
- Akkaya, C.; Obermeier, M.; Wolf, P.; Krcmar, H. Components of trust influencing egovernment adoption in Germany. In Proceedings of the International Conference on Electronic Government, Delft, The Netherlands, 28 August–2 September 2011; pp. 88–99. [Google Scholar]
- Al-Gahtani, S.S. Modeling the electronic transactions acceptance using an extended technology acceptance model. Appl. Comput. Inform. 2011, 9, 47–77. [Google Scholar] [CrossRef] [Green Version]
- Khasawneh, R.; Rabayah, W.; Abu-Shanab, E. E-government acceptance factors: Trust and risk. In Proceedings of the 6th International Conference on Information Technology, Amman, Jordan, 8–10 May 2013; pp. 8–10. [Google Scholar]
- Shajari, M.; Ismail, Z. Trustworthiness: A key factor for adoption models of e-government services in developing countries. In Proceedings of the International Conference on Education and Management Innovation, Singapore, Singapore, 26–28 February 2012; pp. 22–26. [Google Scholar]
- Grönroos, C. Quo vadis, marketing? Toward a relationship marketing paradigm. J. Mark. Manag. 1994, 10, 347–360. [Google Scholar] [CrossRef]
- Berry, L.L. Relationship marketing of services perspectives from 1983 and 2000. J. Relatsh. Mark. 2002, 1, 59–77. [Google Scholar] [CrossRef]
- Morgan, R.M.; Hunt, S.D. The commitment-trust theory of relationship marketing. J. Mark. 1994, 58, 20–38. [Google Scholar] [CrossRef]
- Berry, L.L.; Parasuraman, A. Marketing services: Competing Through Quality; Free Press: New York, NY, USA, 1991. [Google Scholar]
- Hsieh, H.-F.; Shannon, S.E. Three approaches to qualitative content analysis. Qual. Health Res. 2005, 15, 1277–1288. [Google Scholar] [CrossRef]
- Leuthesser, L.; Kohli, A.K. Relational behavior in business markets: Iplications for relationship management. J. Bus. Res. 1995, 34, 221–233. [Google Scholar] [CrossRef]
- Garbarino, E.; Johnson, M.S. The different roles of satisfaction, trust, and commitment in customer relationships. J. Mark. 1999, 63, 70–87. [Google Scholar] [CrossRef]
- Mathieson, K. Predicting user intentions: Comparing the technology acceptance model with the theory of planned behavior. Inf. Syst. Res. 1991, 2, 173–191. [Google Scholar] [CrossRef]
- Pavlou, P.A.; Fygenson, M. Understanding and predicting electronic commerce adoption: An extension of the theory of planned behavior. MIS Q. 2006, 30, 115–143. [Google Scholar] [CrossRef]
- Taylor, S.; Todd, P.A. Understanding information technology usage: A test of competing models. Inf. Syst. Res. 1995, 6, 144–176. [Google Scholar] [CrossRef]
- Hung, S.-Y.; Tang, K.-Z.; Chang, C.-M.; Ke, C.-D. User acceptance of intergovernmental services: An example of electronic document management system. Gov. Inf. Q. 2009, 26, 387–397. [Google Scholar] [CrossRef]
- Lu, C.-T.; Huang, S.-Y.; Lo, P.-Y. An empirical study of on-line tax filing acceptance model: Integrating TAM and TPB. Afr. J. Bus. Manag. 2010, 4, 800–810. [Google Scholar]
- Thompson, C.W.; Moore, M.C. Throat colour reliably signals status in male tree lizards, Urosaurus ornatus. Anim. Behav. 1991, 42, 745–753. [Google Scholar] [CrossRef]
- Compeau, D.R.; Higgins, C.A. Computer self-efficacy: Development of a measure and initial test. MIS Q. 1995, 19, 189–211. [Google Scholar] [CrossRef]
- Hung, S.-Y.; Chang, C.-M.; Kuo, S.-R. User acceptance of mobile e-government services: An empirical study. Gov. Inf. Q. 2013, 30, 33–44. [Google Scholar] [CrossRef]
- Hung, S.-Y.; Chang, C.-M.; Yu, T.-J. Determinants of user acceptance of the e-Government services: The case of online tax filing and payment system. Gov. Inf. Q. 2006, 23, 97–122. [Google Scholar] [CrossRef]
- Lin, F.; Fofanah, S.S.; Liang, D. Assessing citizen adoption of e-Government initiatives in Gambia: A validation of the technology acceptance model in information systems success. Gov. Inf. Q. 2011, 28, 271–279. [Google Scholar] [CrossRef]
- Al-Sobhi, F.; Weerakkody, V.; El-Haddadeh, R. The relative importance of intermediaries in egovernment adoption: A study of Saudi Arabia. In Proceedings of the International Conference on Electronic Government, Delft, The Netherlands, 28 August–2 September 2011; pp. 62–74. [Google Scholar]
- Al-Yahya, E.; Dawes, H.; Smith, L.; Dennis, A.; Howells, K.; Cockburn, J. Cognitive motor interference while walking: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2011, 35, 715–728. [Google Scholar] [CrossRef]
- Rahman, A.L.A.; Jamaludin, A.; Mahmud, Z. Intention to use digital library based on modified UTAUT model: Perspectives of Malaysian postgraduate students. World Acad. Sci. Eng. Technol. 2011, 75, 116–122. [Google Scholar]
- Gefen, D.; Karahanna, E.; Straub, D.W. Trust and TAM in online shopping: An integrated model. MIS Q. 2003, 27, 51–90. [Google Scholar] [CrossRef]
- Zhang, X.; Maruping, L.M. Household technology adoption in a global marketplace: Incorporating the role of espoused cultural values. Inf. Syst. Front. 2008, 10, 403–413. [Google Scholar] [CrossRef]
- Sulaiman, A.; Jaafar, N.I.; Aziz, N.A.A. Factors influencing intention to use MYEPF I-Akaun. World Appl. Sci. J. 2012, 18, 451–461. [Google Scholar]
- Lu, H.-P.; Hsu, C.-L.; Hsu, H.-Y. An empirical study of the effect of perceived risk upon intention to use online applications. Inf. Manag. Comput. Secur. 2005, 13, 106–120. [Google Scholar] [CrossRef]
- Teo, T.S.; Liu, J. Consumer trust in e-commerce in the United States, Singapore and China. Omega 2007, 35, 22–38. [Google Scholar] [CrossRef]
- Smith, S.; Paladino, A. Eating clean and green? Investigating consumer motivations towards the purchase of organic food. Australas. Mark. J. 2010, 18, 93–104. [Google Scholar] [CrossRef]
- Al-Ajam, A.S.; Nor, K.M. Influencing factors on behavioral intention to adopt Internet banking service. World Appl. Sci. J. 2013, 22, 1652–1656. [Google Scholar]
- Tsu Wei, T.; Marthandan, G.; Yee-Loong Chong, A.; Ooi, K.-B.; Arumugam, S. What drives Malaysian m-commerce adoption? An empirical analysis. Ind. Manag. Data Syst. 2009, 109, 370–388. [Google Scholar] [CrossRef]
- Xu, Y.; Ma, J.; Sun, Y.; Hao, J.; Sun, Y.; Zhao, Y. Using social network analysis as a strategy for e-commerce recommendation. In Proceedings of the PACIS 2009, Hyderabad, India, 10–12 July 2009; p. 106. [Google Scholar]
- Kim, C.; Tao, W.; Shin, N.; Kim, K.-S. An empirical study of customers’ perceptions of security and trust in e-payment systems. Electron. Commer. Res. Appl. 2010, 9, 84–95. [Google Scholar] [CrossRef]
- Schierz, P.G.; Schilke, O.; Wirtz, B.W. Understanding consumer acceptance of mobile payment services: An empirical analysis. Electron. Commer. Res. Appl. 2010, 9, 209–216. [Google Scholar] [CrossRef]
- Ramayah, T.; Rouibah, K.; Gopi, M.; Rangel, G.J. A decomposed theory of reasoned action to explain intention to use Internet stock trading among Malaysian investors. Comput. Hum. Behav. 2009, 25, 1222–1230. [Google Scholar] [CrossRef]
- Crespo, A.H.; Del Bosque, I.R. The influence of the commercial features of the Internet on the adoption of e-commerce by consumers. Electron. Commer. Res. Appl. 2010, 9, 562–575. [Google Scholar] [CrossRef]
- Schaupp, L.C.; Carter, L. The impact of trust, risk and optimism bias on E-file adoption. Inf. Syst. Front. 2010, 12, 299–309. [Google Scholar] [CrossRef]
- Karaali, D.; Gumussoy, C.A.; Calisir, F. Factors affecting the intention to use a web-based learning system among blue-collar workers in the automotive industry. Comput. Hum. Behav. 2011, 27, 343–354. [Google Scholar] [CrossRef]
- Ng, B.-Y.; Rahim, M. A socio-behavioral study of home computer users‘ intention to practice security. In Proceedings of the PACIS 2005, Bangkok, Thailand, 7–10 July 2005; p. 20. [Google Scholar]
- Ajzen, I. From intentions to actions: A theory of planned behavior. In Action Control; Springer: Berlin, Germany, 1985; pp. 11–39. [Google Scholar]
- Bhattacherjee, A. Acceptance of e-commerce services: The case of electronic brokerages. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2000, 30, 411–420. [Google Scholar] [CrossRef]
- Bhattacherjee, A. Individual trust in online firms: Scale development and initial test. J. Manag. Inf. Syst. 2002, 19, 211–241. [Google Scholar]
- Fogelgren-Pedersen, A.; Jelbo, C.; Viborg Andersen, K. The paradox of the mobile internet: Acceptance of gadgets and rejection of innovations. In Proceedings of the BLED 2003, Bled, Slovenia, 9–11 June 2003; p. 56. [Google Scholar]
- Chu, P.-Y.; Hsiao, N.; Lee, F.-W.; Chen, C.-W. Exploring success factors for Taiwan’s government electronic tendering system: Behavioral perspectives from end users. Gov. Inf. Q. 2004, 21, 219–234. [Google Scholar] [CrossRef]
- Woon, I.M.; Kankanhalli, A. Investigation of IS professionals’ intention to practise secure development of applications. Int. J. Hum. Comput. Stud. 2007, 65, 29–41. [Google Scholar] [CrossRef]
- Loch, K.D.; Straub, D.W.; Kamel, S. Diffusing the Internet in the Arab world: The role of social norms and technological culturation. IEEE Trans. Eng. Manag. 2003, 50, 45–63. [Google Scholar] [CrossRef]
- Rana, N.P.; Dwivedi, Y.K.; Williams, M.D.; Weerakkody, V. Investigating success of an e-government initiative: Validation of an integrated IS success model. Inf. Syst. Front. 2015, 17, 127–142. [Google Scholar] [CrossRef]
- Hsu, M.-H.; Yen, C.-H.; Chiu, C.-M.; Chang, C.-M. A longitudinal investigation of continued online shopping behavior: An extension of the theory of planned behavior. Int. J. Hum. Comput. Stud. 2006, 64, 889–904. [Google Scholar] [CrossRef]
- Nasco, S.A.; Toledo, E.G.; Mykytyn, P.P., Jr. Predicting electronic commerce adoption in Chilean SMEs. J. Bus. Res. 2008, 61, 697–705. [Google Scholar] [CrossRef]
- Lee, M.-C. Factors influencing the adoption of internet banking: An integration of TAM and TPB with perceived risk and perceived benefit. Electron. Commer. Res. Appl. 2009, 8, 130–141. [Google Scholar] [CrossRef]
- Lu, J.-L.; Chou, H.-Y.; Ling, P.-C. Investigating passengers’ intentions to use technology-based self check-in services. Transp. Res. Part E Logist. Transp. Rev. 2009, 45, 345–356. [Google Scholar] [CrossRef]
- Casaló, L.V.; Flavián, C.; Guinalíu, M. Determinants of the intention to participate in firm-hosted online travel communities and effects on consumer behavioral intentions. Tour. Manag. 2010, 31, 898–911. [Google Scholar] [CrossRef]
- Beiginia, A.R.; Besheli, A.S.; Soluklu, M.E.; Ahmadi, M. Assessing the mobile banking adoption based on the decomposed theory of planned behaviour. Eur. J. Econ. Financ. Adm. Sci. 2011, 28, 7–15. [Google Scholar]
- Zhang, L.; Zhu, J.; Liu, Q. A meta-analysis of mobile commerce adoption and the moderating effect of culture. Comput. Hum. Behav. 2012, 28, 1902–1911. [Google Scholar] [CrossRef]
- Bandura, A. Social Foundations of Thought and Action; Prentice Hall: Englewood Cliffs, NJ, USA, 1986. [Google Scholar]
- AL-Majali, M.M.; Mat, N.N. Applications of planned behavior theory on internet banking services adoption in Jordan: Structural equation modeling approach. China USA Bus. Rev. 2010, 9, 1. Available online: https://pdfs.semanticscholar.org/0349/6ec6025006438af811a4a8c1ade18da4fd4f.pdf (accessed on 16 July 2019).
- Hsieh, P.-J. Physicians’ acceptance of electronic medical records exchange: An extension of the decomposed TPB model with institutional trust and perceived risk. Int. J. Med. Inform. 2015, 84, 1–14. [Google Scholar] [CrossRef]
- Nor, K.M.; Pearson, J.M. An exploratory study into the adoption of internet banking in a developing country: Malaysia. J. Internet Commer. 2008, 7, 29–73. [Google Scholar] [CrossRef]
- Shih, Y.-Y.; Fang, K. The use of a decomposed theory of planned behavior to study Internet banking in Taiwan. Internet Res. 2004, 14, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Weng, C.; Tsai, C.-C.; Weng, A. Social support as a neglected e-learning motivator affecting trainee‘s decisions of continuous intentions of usage. Australas. J. Educ. Technol. 2015, 31, 177–192. [Google Scholar] [CrossRef]
- Smith, J.B.; Barclay, D.W. The effects of organizational differences and trust on the effectiveness of selling partner relationships. J. Mark. 1997, 61, 3–21. [Google Scholar] [CrossRef]
- Carr, A.S.; Smeltzer, L.R. An empirically based operational definition of strategic purchasing. Eur. J. Purch. Supply Manag. 1997, 3, 199–207. [Google Scholar] [CrossRef]
- Singh, J.; Sirdeshmukh, D. Agency and trust mechanisms in consumer satisfaction and loyalty judgments. J. Acad. Mark. Sci. 2000, 28, 150–167. [Google Scholar] [CrossRef]
- Gefen, D. E-commerce: The role of familiarity and trust. Omega 2000, 28, 725–737. [Google Scholar] [CrossRef]
- Kim, K.K.; Prabhakar, B. Initial trust and the adoption of B2C e-commerce: The case of internet banking. ACM SIGMIS Database: DATABASE Adv. Inf. Syst. 2004, 35, 50–64. [Google Scholar] [CrossRef]
- McKnight, D.H.; Chervany, N.L. What trust means in e-commerce customer relationships: An interdisciplinary conceptual typology. Int. J. Electron. Commer. 2001, 6, 35–59. [Google Scholar] [CrossRef]
- Hess, J.; Story, J. Trust-based commitment: Multidimensional consumer-brand relationships. J. Consum. Mark. 2005, 22, 313–322. [Google Scholar] [CrossRef]
- McKnight, D.H.; Choudhury, V.; Kacmar, C. Developing and validating trust measures for e-commerce: An integrative typology. Inf. Syst. Res. 2002, 13, 334–359. [Google Scholar] [CrossRef]
- Arantola, H. Consumer bonding-a conceptual exploration. J. Relatsh. Mark. 2002, 1, 93–107. [Google Scholar] [CrossRef]
- Wang, Y.; Kandampully, J.A.; Lo, H.-P.; Shi, G. The roles of brand equity and corporate reputation in CRM: A Chinese study. Corp. Reput. Rev. 2006, 9, 179–197. [Google Scholar] [CrossRef]
- Wulf, K.D.; Odekerken-Schröder, G.; Iacobucci, D. Investments in consumer relationships: A cross-country and cross-industry exploration. J. Mark. 2001, 65, 33–50. [Google Scholar] [CrossRef]
- Lilijander, V.; Strandvik, T. The nature of customer relationship in services. Adv. Serv. Mark. Manag. 1995, 4, 67. [Google Scholar]
- Smith, J.B. Buyer–seller relationships: Similarity, relationship management, and quality. Psychol. Market. 1998, 15, 3–21. [Google Scholar] [CrossRef]
- Roberts, K.; Varki, S.; Brodie, R. Measuring the quality of relationships in consumer services: An empirical study. Eur. J. Mark. 2003, 37, 169–196. [Google Scholar] [CrossRef]
- Vieira, A.; Ennew, C.; Winklhofer, H. Relationship Quality in the Portuguese Hotel Industry: An Empirical Investigation. In Proceedings of the Atlas International Conference, Networking and Partnerships in Destination & Development Management, Università Degli Studi di Napoli, Naples, Italy, 4–6 April 2004. [Google Scholar]
- Parasuraman, A.; Berry, L.L.; Zeithaml, V.A. Refinement and reassessment of the SERVQUAL scale. J. Retail. 1991, 67, 420–450. [Google Scholar]
- Eastlick, M.A.; Lotz, S.L.; Warrington, P. Understanding online B-to-C relationships: An integrated model of privacy concerns, trust, and commitment. J. Bus. Res. 2006, 59, 877–886. [Google Scholar] [CrossRef]
- Liang, C.-J.; Wang, W.-H. Integrative research into the financial services industry in Taiwan: Relationship bonding tactics, relationship quality and behavioural loyalty. J. Financ. Serv. Market. 2005, 10, 65–83. [Google Scholar] [CrossRef]
- Rao, S.; Perry, C. Thinking about relationship marketing: Where are we now? J. Bus. Ind. Market. 2002, 17, 598–614. [Google Scholar] [CrossRef]
- Prince, L.; Arnould, E.J. Commercial Friendship: Service Provider-Client Relationship in Context. J. Mark. 1999, 63, 38–56. [Google Scholar]
- Al-Ajam, A.S.; Md Nor, K. Challenges of adoption of internet banking service in Yemen. Int. J. Bank Mark. 2015, 33, 178–194. [Google Scholar] [CrossRef]
- Armitage, C.J.; Conner, M. Distinguishing perceptions of control from self-efficacy: Predicting consumption of a low-fat diet using the theory of planned behavior. J. Appl. Soc. Psychol. 1999, 29, 72–90. [Google Scholar] [CrossRef]
- Liang, C.-J.; Chen, H.-J.; Wang, W.-H. Does online relationship marketing enhance customer retention and cross-buying? Serv. Ind. J. 2008, 28, 769–787. [Google Scholar] [CrossRef]
- Sekaran, U.; Bougie, R. Research Methods for Business: A Skill Building Approach; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Wahab, A. Factors Determining Perceived Job Performance of University Leaders in Pakistan. Ph.D. Thesis, Universiti Utara Malaysia, Kedah, Malaysia, 2016. [Google Scholar]
- Tabachnick, B.G.; Fidell, L.S.; Ullman, J.B. Using Multivariate Statistics; Pearson: Boston, MA, USA, 2007; Volume 5. [Google Scholar]
- Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); Sage Publications: Saunders Oaks, CA, USA, 2016. [Google Scholar]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef]
- Pynoo, B.; Devolder, P.; Tondeur, J.; Van Braak, J.; Duyck, W.; Duyck, P. Predicting secondary school teachers’ acceptance and use of a digital learning environment: A cross-sectional study. Comput. Hum. Behav. 2011, 27, 568–575. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; ERLBAUM: New York, NY, USA, 1988. [Google Scholar]
- Park, P.; Ko, J.W.; Jeong, C. Reciprocally convex approach to stability of systems with time-varying delays. Automatica 2011, 47, 235–238. [Google Scholar] [CrossRef]
- Alshare, K.A.; Freeze, R.D.; Lane, P.L.; Wen, H.J. The impacts of system and human factors on online learning systems use and learner satisfaction. Decis. Sci. J. Innov. Educ. 2011, 9, 437–461. [Google Scholar] [CrossRef]
- Lu, J.; Shambour, Q.; Xu, Y.; Lin, Q.; Zhang, G. BizSeeker: A hybrid semantic recommendation system for personalized government-to-business e-services. Internet Res. 2010, 20, 342–365. [Google Scholar] [CrossRef]
- Huang, Z.; Benyoucef, M. Usability and credibility of e-government websites. Gov. Inf. Q. 2014, 31, 584–595. [Google Scholar] [CrossRef]
- Sedek, K.A.; Omar, M.A.; Sulaiman, S. Interoperable SOA-based architecture for e-government portal. In Proceedings of the 2012 IEEE Conference on Open Systems, Kuala Lumpur, Malaysia, 21–24 October 2012; pp. 1–6. [Google Scholar]
- Teo, T.S.; Srivastava, S.C.; Jiang, L. Trust and electronic government success: An empirical study. J. Manag. Inf. Syst. 2008, 25, 99–132. [Google Scholar] [CrossRef]
- Ansari, N.U.; Mohammed, H. Factors affecting the intent to purchase halal personal care products: Empirical evidence from Pakistan. Int. J. Islamic Market. Brand. 2015, 1, 199–213. [Google Scholar] [CrossRef]
- Osman, K.; Kaur, S.J. Evaluating Biology Achievement Scores in an ICT integrated PBL Environment. Eurasia J. Math. Sci. Technol. Educ. 2014, 10, 185–194. [Google Scholar]
- Aziz, M.A.; Abawajy, J.; Chowdhury, M. The Challenges of Cloud Technology Adoption in E-government. In Proceedings of the 2013 International Conference on Advanced Computer Science Applications and Technologies, Kuching, Malaysia, 23–24 December 2013; pp. 470–474. [Google Scholar]
- Yeh, R.-S.; Lawrence, J.J. Individualism and Confucian dynamism: A note on Hofstede‘s cultural root to economic growth. J. Int. Bus. Stud. 1995, 26, 655–669. [Google Scholar] [CrossRef]
- Lin, H.-F. Knowledge sharing and firm innovation capability: An empirical study. Int. J. Manpow. 2007, 28, 315–332. [Google Scholar] [CrossRef]
- Renda dos Santos, L.M.; Okazaki, S. Planned e-learning adoption and occupational socialisation in Brazilian higher education. Stud. High. Educ. 2016, 41, 1974–1994. [Google Scholar] [CrossRef]
- Ferraz, M.K.G.I.P. Men’s Purchase Intention of Shampoo: A Model Based on the Theory of Planned Behavior and Self-Concept; NSBE-UNL: Lisbon, Portugal, 2011. [Google Scholar]
- Yeon Kim, H.; Chung, J.-E. Consumer purchase intention for organic personal care products. J. Consum. Market. 2011, 28, 40–47. [Google Scholar] [CrossRef]
- Bachleda, C.; Fakhar, A.; Hlimi, L. Sunscreen purchase intention amongst young Moroccan adults. Int. J. Acad. Res. Bus. Soc. Sci. 2012, 2, 132–150. [Google Scholar]
- Strauss, J.; Kleine Stüve, S. Organic Hair Care and the Green Purchasing Gap: A TPB Approach. 2016. Available online: http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A940589&dswid=-6000 (accessed on 18 July 2019).
- Bandura, A. Social cognitive theory of self-regulation. Organ. Behav. Hum. Decis. Process. 1991, 50, 248–287. [Google Scholar] [CrossRef]
- Triandis, H.C. Values, attitudes, and interpersonal behavior. In Nebraska Symposium on Motivation; University of Nebraska Press: Lincoln, NE, USA; 1979. [Google Scholar]
- Smeltzer, L.R. The meaning and origin of trust in buyer-supplier relationships. Int. J. Purch. Mater. Manag. 1997, 33, 40–48. [Google Scholar] [CrossRef]
- Akkaya, C.; Wolf, P.; Krcmar, H. Factors influencing citizen adoption of e-government services: A cross-cultural comparison (Research in progress). In Proceedings of the 2012 45th Hawaii International Conference on System Sciences, Maui, HI, USA, 4–7 January 2012; pp. 2531–2540. [Google Scholar]
- Hennig-Thurau, T.; Gwinner, K.P.; Gremler, D.D. Understanding relationship marketing outcomes: An integration of relational benefits and relationship quality. J. Serv. Res. 2002, 4, 230–247. [Google Scholar] [CrossRef]
Year | Author | Country | Theory | Constructs |
---|---|---|---|---|
2018 | (Almukhlifi, Deng, and Kam [58]) | KSA | TAM | Adoption, perceived ease of use, perceived usefulness, computer self-efficacy, Wastta |
2017 | (Dwivedi et al. [59]) | India | UTAUT | Behavior, intention, attitude performance expectancy, effort expectancy, facilitating conditions, social influence |
2017 | (Xie, Song, Peng, and Shabbir [60]) | China | TPB | Intention, attitude subjective norm, perceived behavioral control, perceived ease of use, perceived risk, trust, perceived usefulness |
2018 | (Chatfield and Reddick [61]) | Australia | IDT | Adoption, policy innovation diffusion, efficacy. |
2015 | (Rana and Dwivedi [57]) | India | SCT | Behavioral intention, affect, self-efficacy, outcome expectation, social influence, anxiety |
Demographic Category | Results | Frequency | Percentage |
---|---|---|---|
Gender | Male | 274 | 69.2% |
Female | 122 | 30.8% | |
Age | up to 25 | 12 | 3% |
26–35 | 48 | 12% | |
36–45 | 147 | 37% | |
46–55 | 131 | 33% | |
56–60 | 58 | 15% | |
61+ | 0 | 0% | |
Education level | MA/MSC/MBA | 119 | 30% |
MS/M.Phil. | 194 | 49% | |
Job Title | PhD | 83 | 21% |
Lecturer | 170 | 43% | |
Assistant Professor | 119 | 30% | |
Associate Professor | 67 | 17% | |
Professor | 40 | 10% | |
Marital Status | Married | 269 | 68% |
Single | 127 | 32% | |
Frequency of internet usage | Daily basis | 328 | 83% |
Weekly basis | 44 | 11% | |
Monthly basis | 20 | 5% | |
Only once needed | 4 | 1% | |
Have you ever used e-government Services? | Yes | 297 | 75% |
No | 99 | 25% | |
Which e-government service do you use? | e-ID card | 57 | 23% |
e-Passport | 18 | 7% | |
e-Ticketing | 125 | 42% | |
e-Fard | 96 | 28% |
Construct | Items | Loadings | CR | AVE |
---|---|---|---|---|
Intention | INT1 | 0.810 | 0.884 | 0.610 |
(INT) | INT2 | 0.550 | ||
INT3 | 0.841 | |||
INT4 | 0.880 | |||
INT5 | 0.789 | |||
Attitude | ATT1 | 0.855 | 0.766 | 0.675 |
(ATT) | ATT2 | 0.820 | ||
ATT3 | 0.789 | |||
Subjective Norm | SN1 | 0.606 | 0.837 | 0.566 |
(SN) | SN2 | 0.814 | ||
SN3 | 0.819 | |||
SN4 | 0.750 | |||
Perceived Behavioral Control | PBC1 | 0.877 | 0.889 | 0.728 |
(PBC) | PBC2 | 0.862 | ||
PBC3 | 0.820 | |||
Trust | TR1 | 0.741 | 0.811 | 0.518 |
(TR) | TR2 | 0.645 | ||
TR3 | 0.781 | |||
TR4 | 0.706 | |||
Performance Expectancy | PE1 | 0.691 | 0.820 | 0.533 |
(PE) | PE2 | 0.692 | ||
PE3 | 0.735 | |||
PE4 | 0.798 | |||
Effort Expectancy | EE1 | 0.710 | 0.828 | 0.546 |
(EE) | EE2 | 0.807 | ||
EE3 | 0.677 | |||
EE4 | 0.756 | |||
Perceived Risk | PR1 | 0.877 | 0.844 | 0.579 |
(PR) | PR2 | 0.778 | ||
PR3 | 0.730 | |||
PR4 | 0.638 | |||
Mass media influence | MI1 | 0.833 | 0.876 | 0.780 |
(MI) | MI2 | 0.931 | ||
Family Influence | FI1 | 0.810 | 0.876 | 0.780 |
(FI) | FI2 | 0.758 | ||
FI3 | 0.757 | |||
Self-Efficacy | SE1 | 0.697 | 0.840 | 0.638 |
(SE) | SE2 | 0.856 | ||
SE3 | 0.833 | |||
Facilitating Condition | FC1 | 0.552 | 0.804 | 0.587 |
(FC) | FC2 | 0.788 | ||
FC3 | 0.914 | |||
Economic Bonds | EB1 | 0.866 | 0.788 | 0.560 |
(EB) | EB2 | 0.781 | ||
EB3 | 0.565 | |||
Structural Bonds | STB1 | 0.720 | 0.827 | 0.615 |
(STB) | STB2 | 0.854 | ||
STB3 | 0.773 | |||
Social Bonds | SB1 | 0.694 | 0.804 | 0.579 |
(SB) | SB2 | 0.749 | ||
SB3 | 0.833 |
ATT | EB | EE | FC | FI | MMI | PBC | PE | PI | PR | SB | SE | SN | STB | TR | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ATT | |||||||||||||||
EB | 0.567 | ||||||||||||||
EE | 0.520 | 0.732 | |||||||||||||
FC | 0.084 | 0.096 | 0.109 | ||||||||||||
FI | 0.500 | 0.513 | 0.517 | 0.046 | |||||||||||
MMI | 0.574 | 0.348 | 0.373 | 0.067 | 0.466 | ||||||||||
PBC | 0.061 | 0.262 | 0.074 | 0.051 | 0.123 | 0.218 | |||||||||
PE | 0.384 | 0.356 | 0.402 | 0.121 | 0.366 | 0.382 | 0.291 | ||||||||
PI | 0.537 | 0.608 | 0.378 | 0.080 | 0.341 | 0.518 | 0.334 | 0.530 | |||||||
PR | 0.098 | 0.116 | 0.119 | 0.102 | 0.125 | 0.059 | 0.063 | 0.111 | 0.083 | ||||||
SB | 0.213 | 0.363 | 0.308 | 0.166 | 0.132 | 0.243 | 0.284 | 0.783 | 0.412 | 0.079 | |||||
SE | 0.100 | 0.213 | 0.135 | 0.067 | 0.110 | 0.091 | 0.258 | 0.107 | 0.127 | 0.080 | 0.162 | ||||
SN | 0.447 | 0.506 | 0.397 | 0.068 | 0.346 | 0.364 | 0.094 | 0.292 | 0.426 | 0.070 | 0.250 | 0.151 | |||
STB | 0.514 | 0.692 | 0.446 | 0.084 | 0.316 | 0.497 | 0.151 | 0.469 | 0.850 | 0.071 | 0.442 | 0.058 | 0.379 | ||
TR | 0.493 | 0.668 | 0.455 | 0.078 | 0.357 | 0.566 | 0.237 | 0.526 | 0.845 | 0.088 | 0.482 | 0.268 | 0.350 | 0.805 |
Hypothesis | Relationship | Path Coefficient | Std. Error | t Value | p-Value | Supported | R2 | Q2 | f2 |
---|---|---|---|---|---|---|---|---|---|
H1 | ATT−> INT | 0.191 | 0.045 | 4.308 | 0.000 | Yes | 0.483 | 0.274 | 0.057 |
H2 | SN− > INT | 0.129 | 0.040 | 3.212 | 0.001 | Yes | 0.028 | ||
H3 | PBC− > INT | 0.106 | 0.041 | 2.584 | 0.005 | Yes | 0.021 | ||
H4 | TR− > INT | 0.528 | 0.040 | 13.080 | 0.000 | Yes | 0.444 | ||
H1a | PE− > ATT | 0.133 | 0.047 | 2.845 | 0.002 | Yes | 0.237 | 0.145 | 0.019 |
H1b | EE− > ATT | 0.263 | 0.044 | 5.951 | 0.000 | Yes | 0.077 | ||
H1c | PR− > ATT | −0.064 | 0.062 | 1.036 | 0.150 | No | 0.005 | ||
H2a | MMI− > SN | 0.220 | 0.049 | 4.527 | 0.000 | Yes | 0.106 | 0.052 | 0.048 |
H2b | FI− > SN | 0.177 | 0.056 | 3.147 | 0.000 | Yes | 0.031 | ||
H3a | SE− > PBC | 0.222 | 0.048 | 4.593 | 0.000 | Yes | 0.050 | 0.030 | 0.052 |
H3b | FC− > PBC | 0.032 | 0.078 | 0.412 | 0.340 | No | 0.001 | ||
H4a | EB− > TR | 0.236 | 0.045 | 5.283 | 0.000 | Yes | 0.40 | 0.191 | 0.073 |
H4b | SB− > TR | 0.144 | 0.045 | 3.201 | 0.001 | Yes | 0.031 | ||
H4c | STB− > TR | 0.425 | 0.047 | 9.089 | 0.000 | Yes | 0.225 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zahid, H.; Haji Din, B. Determinants of Intention to Adopt E-Government Services in Pakistan: An Imperative for Sustainable Development. Resources 2019, 8, 128. https://doi.org/10.3390/resources8030128
Zahid H, Haji Din B. Determinants of Intention to Adopt E-Government Services in Pakistan: An Imperative for Sustainable Development. Resources. 2019; 8(3):128. https://doi.org/10.3390/resources8030128
Chicago/Turabian StyleZahid, Hasan, and Badariah Haji Din. 2019. "Determinants of Intention to Adopt E-Government Services in Pakistan: An Imperative for Sustainable Development" Resources 8, no. 3: 128. https://doi.org/10.3390/resources8030128
APA StyleZahid, H., & Haji Din, B. (2019). Determinants of Intention to Adopt E-Government Services in Pakistan: An Imperative for Sustainable Development. Resources, 8(3), 128. https://doi.org/10.3390/resources8030128