Next Article in Journal / Special Issue
Concretizing Green Growth and Sustainable Business Models in the Water Sector of Jordan
Previous Article in Journal / Special Issue
Implementation of Circular Economy Principles in Regional Solid Municipal Waste Management: The Case of Sverdlovskaya Oblast (Russian Federation)
Article Menu

Export Article

Open AccessArticle

Towards Circular Economy: Evaluation of Sewage Sludge Biogas Solutions

1
Department of Investment Program, Municipal Unitary Enterprise for Water Supply and Sewerage, Tsarskaya str., 4, 620075 Ekaterinburg, Russia
2
Department of Environmental Economics, Ural Federal University, Mira str., 19, 620002 Ekaterinburg, Russia
3
Department of Oil and Gas Processing Technology, Tyumen Industrial University, Volodarskogo str., 38, 625000 Tyumen, Russian
4
Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
*
Author to whom correspondence should be addressed.
Resources 2019, 8(2), 91; https://doi.org/10.3390/resources8020091
Received: 15 March 2019 / Revised: 2 May 2019 / Accepted: 4 May 2019 / Published: 8 May 2019
  |  
PDF [2742 KB, uploaded 8 May 2019]
  |     |  

Abstract

Today it is obvious that the existing linear model of the economy does not correlate with the principles of sustainable development. The circular economy model can replace the current linear economy whilst addressing the issues of environmental deterioration, social equity and long-term economic growth. In the context of effectively implementing circular economy objectives, particular importance should be attributed to wastewater treatment sludge management, due to the possibility of recovering valuable raw materials and using its energy potential. Anaerobic digestion is one of the methods of recovering energy from sewage sludge. The main goal of this study is to make a preliminary evaluation of possible sewage sludge biogas and biomethane solutions using a computation model called MCBioCH4 and compare its results with laboratory tests of sewage sludge fermentation from the northern wastewater treatment plant (WWTP) of Ekaterinburg (Russian Federation). Laboratory experiments were conducted to determine the volume and qualitative composition of biogas produced throughout anaerobic fermentation of raw materials coming from the WWTP. The specific productivity of samples ranged between 308.46 Nm3/tvs and 583.08 Nm3/tvs depending if mesophilic or thermophilic conditions were analyzed, or if the experiment was conducted with or without sludge pre-treatment. Output values from the laboratory were used as input for MCBioCH4 to calculate the flow of biogas or biomethane produced. For the case study of Ekaterinburg two possible energy conversion options were selected: B-H (biogas combustion with cogeneration of electrical and thermal energy) and M-T (biomethane to be used in transports). The results of the energy module showed a net energy content of the biogas between 6575 MWh/year and 7200 MWh/year. Both options yielded a favorable greenhouse gas (GHG) balance, meaning that avoided emissions are higher than produced emissions. The results discussion also showed that, in this case, the B-H option is preferable to the M-T option. The implementation of the biogas/biomethane energy conversion system in Ekaterinburg WWTP necessitates further investigations to clarify the remaining technical and economic aspects View Full-Text
Keywords: sewage sludge; biogas evaluation; circular economy; computation modelling sewage sludge; biogas evaluation; circular economy; computation modelling
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Kiselev, A.; Magaril, E.; Magaril, R.; Panepinto, D.; Ravina, M.; Zanetti, M.C. Towards Circular Economy: Evaluation of Sewage Sludge Biogas Solutions. Resources 2019, 8, 91.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Resources EISSN 2079-9276 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top