Dematerialization—A Disputable Strategy for Resource Conservation Put under Scrutiny
Abstract
:1. Introduction
Research Questions and Goals
2. Resource Conservation Conceptualization for Materials and the Factor X Approach
2.1. Terminology
2.2. Productivity Indicators and Decoupling by Germany’s Example
2.3. “Factor X”
3. Assessment
3.1. Areas of Protection
- Intrinsic values: Infringing the supply of raw materials as such is understood as an inadmissible intervention. Each raw material extraction is therefore to be regarded as detrimental to the protection objective.
- Reduction: Reducing the raw materials’ availability is regarded as a restriction on the freedom of future generations. In this case, the decision-making freedom of future generations and intergenerational fairness are the overriding protection objective.
- Devaluation: It is assumed that raw material deposits of lower quality must be exploited in future. This will cause increased mining costs for future generations.
- Substitution: From this perspective, the demands of future generations will be equated with today’s consumption interests and the substitution options of non-renewable raw materials will be regarded based on the technical and economic costs for developing alternative technologies.
3.2. Relevance and Representativeness of Mass-Based Indicators
3.2.1. Representation Function for Environmental Impacts
3.2.2. Representation Function for Scarcities
- physical depletion;
- structural supply risks;
- raw material criticality.
Physical Depletion
Structural Supply Risks
Raw Material Criticality
3.3. Exegese of the Precautionary Principle
4. Findings
- Mass-based indicators that consider primary raw materials as objects of balance and consequently trace back all material flows entering a system by raw material equivalents (RMEs) have the greatest significance since they unambiguously map a specified natural resource, the primary raw materials. They explicitly address the AoP natural resources in terms of raw material consumption for biotic and abiotic raw materials. An intrinsic value is attributed to raw materials, expressed by its mass, and any form of raw material extraction and removal ex aequo impairs the AoP natural resources. This does not apply to narrow indicators that only consider direct material input or even more complex indicators that not only include indirect raw material flows in upstream systems but also hidden material flows (unused extractions). In the case of the latter ones, there are asymmetries in balancing and excessive data uncertainties.
- However, raw-material, mass-based indicators to which qualitative relevance has been attributed also fail to analytically map other resources. It is not tenable to draw a conclusion about high “resource relevance” from high physical material or raw material inputs. One can at most speak of “raw material relevance”.
- All aggregated mass-based material flow indicators including those in RME have at best a weak representation function for negative environmental impacts. According to correlation analyses, input indicators for raw materials and materials do not qualify as provable significant parameters concerning either environmental impacts of raw material production for a socio-economic system or the total environmental impact of this socio-economic system. If the representation function is already rudimentary at a macroeconomic level, it is even weaker at the micro level. Basically, the smaller and more fine-grained the system is, the less individual indicators will be predestined as representatives. System optimization based on material input can lead to significant increases in other resource consumptions during production or further uses over the life cycle. An obvious consensus prevails in the literature that non-renewable primary energy demand as a physical input quantity in units of energy is the best possible solitary representative of a system’s further environmental impacts.
- In light of methods and findings from the assessment of raw material availability and consumption, no representation function for avoiding raw material scarcities is available either for absolute, structural, or relative socio-economic scarcities, i.e., criticalities. No general and plausible relationships can be constructed using aggregated material flow indicators for raw material scarcities. On the other hand, this requires a strong material-exact disaggregation. Nonetheless, the criticality concept complements the resource efficiency concept by a relevant aspect: the significance of the raw materials used for a system. The specific criticalities yield important reference points for the prioritization and derivation of effective measures and tools to increase the efficiency of their use, recycling, or substitution.
- Justifying dematerialization strategies and target setting with reference to the precautionary principle is controversial since it ignores the lack of empirical representativeness of mass-based material flow indicators for known environmental impacts. In addition, the cause–effect relationships between mass-based material input into a system and the known and unknown impacts of a system cannot be reasonably produced using logical reasoning due to major allocation problems and the complexity of large systems such as economies, which also makes it impossible to assess the scientific uncertainties.
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
AoP | area of protection |
CED | cumulative energy demand |
CRD | cumulative raw material demand |
DMC | domestic material consumption |
DMCabiot | abiotic domestic material consumption |
DMI | direct material input |
DMIabiot | abiotic direct material input |
LCIA | life cycle impact assessment |
MIPS | material intensity per service unit |
RME | raw material equivalents |
RMI | primary raw material input |
RMIabiot | abiotic primary raw material input |
References
- Rockström, J.; Steffen, W.; Noone, K.; Persson, A.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Faulstich, M.; Foth, H.; Calliess, C.; Hohmeyer, O.; Holm-Müller, K.; Niekisch, M.; Schreurs, M. Environmental Report 2012: Responsibility in a Finite world; Erich Schmidt Verlag: Berlin, Germany, 2012; p. 716. [Google Scholar]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Thematic Strategy on the Sustainable Use of Natural Resources; (COM 670 (2005)); European Commission: Brussels, Belgium, 2005. [Google Scholar]
- European Commission. Roadmap to a Resource Efficient Europe; European Commission: Brussels, Belgium, 2011. [Google Scholar]
- European Commission. A Resource-Efficient Europe: Flagship. Initiative under the Europe 2020 Strategy; European Commission: Brussels, Belgium, 2011. [Google Scholar]
- Kazmierczyk, P.; Geerken, T.; Bahn-Walkowiak, B.; Vanderreydt, I.; Veen, J.V.; Veneziani, M.; De Schoenmakere, M.; Arnold, M. More from Less: Material Resource Efficiency in Europe; 2015 Overview of Policies, Instruments and Targets in 32 Countries; Publications Office of the European Union: Luxembourg, 2016; Volume 10. [Google Scholar]
- Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU). German Resource Efficiency Programme (ProgRess)—Programme for the Sustainable Use and Conservation of Natural Resources; Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU): Berlin, Germany, 2012; pp. 1–116.
- Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB). German Resource Efficiency Programme II (ProgRess II); Programme for the Sustainable Use and Conservation of Natural Resources. Progress Report 2012–2015 and Update 2016–2019; Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB): Berlin, Germany, 2016; pp. 1–158.
- Government of Japan. Fundamental Plan for Establishing a Sound Material-Cycle Society; Ministry of the Environment: Tokyo, Japan, 2003; pp. 1–12.
- National Institution for Transforming India Aayog. Strategy Paper on Resource Efficiency; National Institution for Transforming India: New Delhi, India, 2017; pp. 1–45.
- G7/G20 Sherpa Office of the Federal Chancellery. Final Report by the Federal Government on the G7 Presidency 2015; Press and Information Office of the Federal Government: Berlin, Germany, 2015.
- European Commission. G20. In Proceedings of the Leaders’ Declaration—Shaping an Interconnected World, Hamburg, Germany, 7–8 July 2017. [Google Scholar]
- United Nations. General Assembly. In Transforming Our world: The 2030 Agenda for Sustainable Development; Resolution Adopted by the General Assembly on 25 September 2015; A/RES/70/1; United Nations: Washington, DC, USA, 2015; pp. 1–35. [Google Scholar]
- Rizos, V.; Tuokko, K.; Behrens, A. The Circular Economy: A Review of Definitions, Processes and Impacts; Research Report No 2017/8; Customs Excise and Preventive Service: Brussels, Belgium, 2017; pp. 1–44.
- EU COM. Closing the Loop—An Eu Action Plan for the Circular Economy; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- Sitra. Leading the Cycle: Finnish Road Map. to a Circular Economy 2016–2025; Sitra Studies 121; Sitra: Helsinki, Finland, 2016; p. 56. [Google Scholar]
- Government The Netherlands. A Circular Economy in the Netherlands by 2050; The Ministry of Infrastructure and the Environment and the Ministry of Economic Affairs, also on Behalf of the Ministry of Foreign Affairs and the Ministry of the Interior and Kingdom Relations: Hague, The Netherlands, 2016; p. 72.
- Reichel, A.; Schoenmakere, M.D.; Gillabel, J. Circular Economy in Europe: Developing the Knowledge Base; Publications Office of the European Union: Luxembourg, 2016; Volume 2. [Google Scholar]
- Report of the Inter-Agency and Expert Group on Sustainable Development Goal Indicators; United Nations Economic and Social Council: New York, NY, USA, 2016; pp. 1–62.
- Federal Statistical Office (Destatis). Nachhaltige Entwicklung in Deutschland—Indikatorenbericht 2016; Federal Statistical Office (Destatis): Wiesbaden, Germany, 2017; pp. 1–150. (In German)
- Wiedmann, T.O.; Schandl, H.; Lenzen, M.; Moran, D.; Suh, S.; West, J.; Kanemoto, K. The material footprint of nations. Proc. Natl. Acad. Sci. USA 2015, 112, 6271–6276. [Google Scholar] [CrossRef] [PubMed]
- Demurtas, A.; Sousanoglou, A.; Morton, G.; Humphris-Bach, A.; Essig, C.; Harding, L.; Cole, A. EU Resource Efficiency Scoreboard 2014; European Commission: Brussels, Belgium, 2015; pp. 1–68. [Google Scholar]
- The Organisation for Economic Co-operation and Development. Material flow and resource productivity indicators. In Working Party on Environmental Information; OECD: Paris, France, 2012; pp. 1–24. [Google Scholar]
- Schmidt-Bleek, F.; Bierter, W. Das MIPS-Konzept : Weniger Naturverbrauch—Mehr Lebensqualität durch Faktor 10; Droemer Knaur: München, Germany, 1998. (In German) [Google Scholar]
- Adriaanse, A.; Bringezu, S.; Hammond, A.; Moriguchi, Y.; Rodenburg, E.; Rogich, D.; Schütz, H. Resource Flows: The Material Basis of Industrial Economies; World Resources Institute: Washington, DC, USA, 1997. [Google Scholar]
- Matthews, E.; Amann, C.; Bringezu, S.; Hüttler, W.; Ottke, C.; Rodenburg, E.; Rogich, D.; Schandl, H.; Van, E.; Weisz, H. The Weight of Nations-Material Outflows from Industrial Economies; World Resources Institute: Washington, DC, USA, 2000; pp. 1–135. [Google Scholar]
- Kågeson, P. Is Factor 10 a Useful Tool in Environmental Policy? Swedish Environmental Protection Agency: Stockholm, Sweden, 1999; pp. 1–31.
- Kleijn, R. Adding it all up. J. Ind. Ecol. 2001, 4, 7–8. [Google Scholar] [CrossRef]
- Bringezu, S. Possible target corridor for sustainable use of global material resources. Resources 2015, 4, 25–54. [Google Scholar] [CrossRef]
- Reijnders, L. The factor x debate: Setting targets for eco-efficiency. J. Ind. Ecol. 1998, 2, 13–22. [Google Scholar] [CrossRef]
- Wiedmann, T.; Minx, J.; Barrett, J.; Vanner, R.; Ekins, P. Sustainable Consumption Und Production—Development of an Evidence Base; Project Ref.: SCP001 Resource Flows; Stockholm Environment Institute: Stockholm, Sweden, 2006; pp. 1–133. [Google Scholar]
- European Economic Area. Gemet—Environmental Thesaurus: Term Natural Resource. Available online: https://www.eea.europa.eu/help/glossary/gemet-environmental-thesaurus/natural-resource (accessed on 2 October 2017).
- Enquete-Kommission Schutz des Menschen und der Umwelt. Die Industriegesellschaft Gestalten—Perspektiven für Einen Nachhaltigen Umgang mit Stoff—Und Materialströmen; Deutscher Bundestag: Bonn, Germany, 1994. (In German)
- United Nations. Convention on Biological Diversity; United Nations: New York, NY, USA, 1992. [Google Scholar]
- Nantke, H.-J.; Gottlob, D.; Summerer, S.; Burger, A.; Dieter, H.H.; Friedrich, A.; Fritz, K.; Greiner, P.; Hahn, J.; Henseling, K.O. Nachhaltige Entwicklung in Deutschland: Die Zukunft Dauerhaft Umweltgerecht Gestalten; Erich Schmidt Verlag: Berlin, Germany, 2002. (In German) [Google Scholar]
- Network of Heads of European Environment Protection Agencies. Delivering the Sustainable Use of Natural Resources; Network of Heads of European Environment Protection Agencies: Copenhagen, Denmark, 2006. [Google Scholar]
- European Environment Agency. Well-Being and the Environment: Building a Resource-Efficient and Circular Economy in Europe; European Environment Agency: Copenhagen, Denmark, 2014; pp. 1–52. [Google Scholar]
- Schumacher, E. Small Is Beautiful: A Study of Economics as if People Mattered; Blond & Briggs: London, UK, 1973. [Google Scholar]
- Kristof, K.; Kanthak, J.; Müller, F.; Rechenberg, B. What matters 2012: Resource efficiency—A key skill for sustainable societies. In What Matters—Annual Report of the German Environment Agency; German Environment Agency (UBA): Dessau-Rosßlau, Germany, 2012; pp. 34–57. [Google Scholar]
- Organization for Economic Cooperation and Development. Material Resources, Productivity and the Environment; Organization for Economic Cooperation and Development: Paris, France, 2015; pp. 1–176. [Google Scholar]
- European Commission. Communication from the Commission to the Council and the European Parliament—Towards a Thematic Strategy on the Sustainable Use of Natural Resources; (COM(2003) 572 Final); European Commission: Brussels, Belgium, 2003. [Google Scholar]
- Association of German Engineers (VDI). Vdi 4800 Part 1: Resource Efficiency—Methodological Principles and Strategies; Beuth Verlag GmbH: Berlin, Germany, 2016; pp. 1–54. [Google Scholar]
- Kosmol, J.; Kanthak, J.; Herrmann, F.; Golde, M.; Alsleben, C.; Penn-Bressel, G.; Schmitz, S.; Gromke, U. Glossar zum Ressourcenschutz; Umweltbundesamt: Dessau-Roßlau, Germany, 2012; pp. 1–44. (In German)
- Organization for Economic Cooperation and Development. Measuring Material Flows and Resource Productivity. The Oecd Guide; The Organisation for Economic Co-operation and Development (OECD): Paris, France, 2007. [Google Scholar]
- Fischer-Kowalski, M.; von Weizsäcker, E.U.; Ren, Y.; Moriguchi, Y.; Crane, W.; Krausmann, F.; Eisenmenger, N.; Giljum, S.; Hennicke, P.; Kemp, R.; et al. Decoupling Natural Resource Use and Environmental Impacts from Economic Growth; United Nations/International Resource Panel: Nairobi, Kenya, 2011; pp. 1–174. [Google Scholar]
- European Statistical System. Economy-Wide Material Flow Accounts and Derived Indicators—A Methodological Guide; Office for Official Publications of the European Communities: Luxembourg, 2001; p. 85. [Google Scholar]
- Balzer, F.; Bünger, D.B.; Dauert, U.; Drosihn, D.; Eckermann, D.F.; Gellrich, A.; Geupel, M.; Gniffke, P.; Günther, J.; Hintzsche, M.; et al. Data on the Environment 2015—Environmental Trends in Germany; Federal Environment Agency (UBA): Dessau-Roßlau, Germany, 2015; pp. 1–144.
- Buyny, S.; Lauber, U. Further Development of the Indicator “Raw Material Productivity” in the National Strategy for Sustainable Development. Calculating Imports and Exports in Raw Material Equivalents; Federal Statistical Office: Wiesbaden, Germany, 2010.
- Federal Statistical Office of Germany. Environmental-Economic Accounting, Sustainable Development in Germany, Environmental and Economic Indicators; Federal Statistical Office: Wiesbaden, Germany, 2014.
- Schoer, K.; Wood, R.; Arto, I.; Weinzettel, J. Estimating raw material equivalents on a macro-level: Comparison of multi-regional input-output analysis and hybrid lci-io. Environ. Sci. Technol. 2013, 47, 14282–14289. [Google Scholar] [CrossRef] [PubMed]
- Schoer, K.; Giegrich, J.; Kovanda, J.; Lauwigi, C.; Liebich, A.; Buyny, S.; Matthias, J. Conversion of European Product Flows into Raw Material Equivalents; Ishares Europe Developed Real Estate ETF: Heidelberg, Germany, 2012; pp. 1–148. [Google Scholar]
- Eurostat. Material Flow Accounts—Flows in Raw Material Equivalents. Available online: http://ec.europa.eu/eurostat/statistics-explained/index.php/Material_flow_accounts_-_flows_in_raw_material_equivalents (accessed on 13 January 2017).
- Mancini, L.; Benini, L.; Sala, S. Resource footprint of europe: Complementarity of material flow analysis and life cycle assessment for policy supp.ort. Environ. Sci. Policy 2015, 54, 367–376. [Google Scholar] [CrossRef]
- Lettenmeier, M.; Liedtke, C.; Rohn, H. Eight tons of material footprint—Suggestion for a resource cap for household consumption in Finland. Resources 2014, 3, 488–515. [Google Scholar] [CrossRef]
- Daly, H.E. Toward a Steady-State Economy; Herman, E.D., Ed.; W.H. Freeman & Co.: San Francisco, CA, USA, 1973. [Google Scholar]
- Ayres, R.U. Industrial metabolism. In Technology and Environment; Ausubel, J., Sladovich, H.E., Eds.; National Academies Press: Washington, DC, USA, 1989. [Google Scholar]
- Von Weizsäcker, E.U.; Lovins, A.B.; Lovins, L.H. Factor Four: Doubling Wealth, Halving Resource Use: The New Report to the Club of Rome; Earthscan Publications Ltd.: London, UK, 1997. [Google Scholar]
- Schmidt-Bleek, F.; Klüting, R. Wieviel Umwelt Braucht der Mensch?: MIPS—Das Maß für Ökologisches Wirtschaften/How Much Environment does Man Need?: MIPS—The Measure of Ecological Management; Birkhäuser: Berlin, Germany; Droemer Munich, Germany, 1994. (In German) [Google Scholar]
- Von Weizsacker, E.U.; Hargroves, K.; Smith, M.; Desha, C.; Stasinopoulos, P. Factor Five: Transforming the Global Economy through 80% Improvements in Resource Productivity; Earthscan Publications Ltd.: London, UK; Droemer Munich, Germany, 2009. [Google Scholar]
- Spangenberg, J.H.; Hinterberger, F.; Moll, S.; Schütz, H. Material flow analysis, TMR and the MIPS concept: A contribution to the development of indicators for measuring changes in consumption and production patterns. Int. J. Sustain. Dev. 1999, 2, 491–505. [Google Scholar] [CrossRef]
- Ritthoff, M.; Rohn, H.; Liedtke, C. Calculating Mips: Resource Productivity of Products and Services; Wuppertal Institute for Climate, Environment and Energy: Wuppertal, Germany, 2002. [Google Scholar]
- Saurat, M.; Ritthoff, M. Calculating mips 2.0. Resources 2013, 2, 581–607. [Google Scholar] [CrossRef]
- Factor 10 Club. Carnoules Declaration; Factor 10 Club: Carnoules, France, 1994. [Google Scholar]
- Hinterberger, F.; Luks, F.; Schmidt-Bleek, F. Material flows vs. ‘natural capital’: What makes an economy sustainable? Ecol. Econ. 1997, 23, 1–14. [Google Scholar] [CrossRef]
- Jeske, U.; Kopfmüller, J.; Wintzer, D. Book Review: Wieviel Umwelt braucht der Mensch?: MIPS—Das Maß für Ökologisches Wirschaften; TATuP—Zeitschrift des ITAS zur Technikfolgenabschätzung. TATuP 1995, 4, 11–16. (In German). Available online: http://www.tatup-journal.de/tadn951_jeua95a.php (accessed on 30 November 2017).
- Schmidt, M. Book Review: Wieviel Umwelt Braucht der Mensch?: MIPS—Das maß für Ökologisches Wirtschaften. Spektrum der Wissenscahft. Spektrum der Wissenschaft 1995, 6, 116. Available online: http://www.spektrum.de/magazin/wieviel-umwelt-braucht-der-mensch-mips-das-mass-fuer-oekologisches-wirtschaften/822379 (accessed on 30 November 2017). (In German).
- Coenen, R.; Klein-Vielhauer, S.; Kopfmüller, J. Stellungnahme zur Studie des Wuppertal-Instituts für Klima, Umwelt und Energie: “Zukunftsfähiges Deutschland“. Ein Beitrag zu einer global nachhaltigen Entwicklung. TATuP Zeitschrift des ITAS zur Technikfolgenabschätzung 1996, 5, 1. (In German) [Google Scholar]
- Schmidt, M. Zu den Schutzzielen der Ressourceneffizienz. uwf UmweltWirtschaftsForum 2014, 22, 147–152. (In German) [Google Scholar] [CrossRef]
- Global Guidance for Life Cycle Impact Assessment Indicators; UNEP/SETAC Life Cycle Initiative: Nairobi, Kenya, 2016; Volume 1.
- Scheringer, M.; Hofstetter, P. Auswahl, Begründung und Vergleich von Schutzgütern in der Ökobilanz-methodik—Ein offenes Problem. In Schutzgüter und Ihre Abwägung aus der Sicht Verschiedener Disziplinen; Umweltnatur-und Umweltsozialwissenschaften ETH: Zürich, Switzerland, 1997; pp. 4–10. (In German) [Google Scholar]
- Hofstetter, P.; Scheringer, M.; Hirsch, G.; Jäggi, C.; Kytzia, S.; Leimbacher, J.; Schaber, P.; Scheringer, M.; Schütz, J.; Seidl, I. Schutzgüter und ihre Abwägung aus der Sicht Verschiedener Disziplinen; Eidgenössische Technische Hochschule (ETH): Zürich, Switzerland, 1997; pp. 1–48. (In German) [Google Scholar]
- Consoli, F.; Allen, D.; Boustead, I.; Fava, J.; Franklin, W.; Jensen, A.; Oude, N.D.; Parrish, R.; Perriman, R.; Postlethewaite, D.; et al. Guidelines for Life-Cycle Assessment: A “Code of Practice”; Society of Environmental Toxicology and Chemistry (SETAC): Brussels, Belgium, 1993; p. 79. [Google Scholar]
- Vadenbo, C.; Rørbech, J.; Haupt, M.; Frischknecht, R. Abiotic resources: New impact assessment approaches in view of resource efficiency and resource criticality—55th discussion forum on life cycle assessment, Zurich, Switzerland, April 11, 2014. Int. J. Life Cycle Assess. 2014, 19, 1686–1692. [Google Scholar] [CrossRef]
- Drielsma, J.; Allington, R.; Brady, T.; Guinée, J.; Hammarstrom, J.; Hummen, T.; Russell-Vaccari, A.; Schneider, L.; Sonnemann, G.; Weihed, P. Abiotic raw-materials in life cycle impact assessments: An emerging consensus across disciplines. Resources 2016, 5, 12. [Google Scholar] [CrossRef]
- Hauschild, M.Z.; Goedkoop, M.; Guinée, J.; Heijungs, R.; Huijbregts, M.; Jolliet, O.; Margni, M.; De Schryver, A.; Humbert, S.; Laurent, A.; et al. Identifying best existing practice for characterization modeling in life cycle impact assessment. Int. J. Life Cycle Assess. 2013, 18, 683–697. [Google Scholar] [CrossRef]
- Steen, B. A Systematic Approach to Environmental Priority Strategies in Product Development (Eps) Version 2000—Models and Data of the Default Method; Chalmers University of Technology, Centre for Environmental Assessment of Products and material Systems (CPM): Gothenburg, Sweden, 1999. [Google Scholar]
- Dewulf, J.; Benini, L.; Mancini, L.; Sala, S.; Blengini, G.A.; Ardente, F.; Recchioni, M.; Maes, J.; Pant, R.; Pennington, D. Rethinking the area of protection “natural resources” in life cycle assessment. Environ. Sci. Technol. 2015, 49, 5310–5317. [Google Scholar] [CrossRef] [PubMed]
- Hofstetter, P. Perspectives in Life Cycle Impact Assessment: A Structured Approach to Combine Models of the Technosphere, Ecosphere and Valuesphere; Kluwer Academic Publishers: Amsterdam, The Netherlands, 1998. [Google Scholar]
- European Commission, Joint Research Centre. International Reference Life Cycle Data System (ILCD) Handbook: Framework and Requirements for Life Cycle Impact Assessment Models and Indicators; Publications Office of the European Union: Luxembourg, 2010. [Google Scholar]
- Jolliet, O.; Müller-Wenk, R.; Bare, J.; Brent, A.; Goedkoop, M.; Heijungs, R.; Itsubo, N.; Peña, C.; Pennington, D.; Potting, J.; et al. The lcia midpoint-damage framework of the unep/setac life cycle initiative. Int. J. Life Cycle Assess. 2004, 9, 394–404. [Google Scholar] [CrossRef]
- European Commission, Joint Research Centre. International Reference Life Cycle Data System (ILCD) Handbook: Recommendations for Life Cycle Impact Assessment in the European Context—Based on Existing Environmental Impact Assessment Models and Factors; Publications Office of the European Union: Luxembourg, 2010. [Google Scholar]
- Thompson, M.; Ellis, R.; Wildavsky, A.B.; Wildavsky, M. Cultural Theory; Westview Press: Boulder, CO, USA, 1990. [Google Scholar]
- Hellweg, S.; Hofstetter, T.B.; Hungerbühler, K. Discounting and the environment: Should current impacts be weighted differently than impacts harming future generations? Int. J. Life Cycle Assess. 2003, 8, 8–18. [Google Scholar]
- Grünig, M.; Srebotnjak, T.; Schock, M.; Porsch, L.; Möller-Gulland, J. Plakative und schnelle Umweltinformation Mittels Hochaggregierter Kenngrößen zur Nachhaltigen Entwicklung; Umweltbundesamt: Berlin, Germany, 2011.
- Baccini, P.; Brunner, P.H. Metabolism of the Anthroposphere: Analysis, Evaluation, Design; The MIT Press: Cambridge, MA, USA, 2012; p. 408. [Google Scholar]
- Ayres, R.U.; Ayres, L. A Handbook of Industrial Ecology; Edward Elgar Publishing: Cheltenham, UK, 2002; p. 688. [Google Scholar]
- Ayres, R.U. Industrial metabolism and global change. Int. Soc. Sci. J. 1989, 41, 363–373. [Google Scholar]
- Bringezu, S.; Sand, I.V.D.; Schütz, H.; Bleischwitz, R.; Moll, S. Analysing Global Resource Use of National and Regional Economies Across Various Levels; Bringezu, S., Ed.; Greenleaf: Sheffield, UK, 2009; pp. 10–51. [Google Scholar]
- Bundesregierung. Nationale Nachhaltigkeitsstrategie—Fortschrittsbericht 2012; Bundesregierung: Berlin, Germany, 2012; pp. 1–264.
- Smeets, E.; Weterings, R. Environmental Indicators: Typology and Overview; European Environment Agency (EEA): Copenhagen, Denmark, 1999. [Google Scholar]
- Hertwich, E.; van der Voet, E.; Suh, S.; Tukker, A.; Huijbregts, M.; Kazmierczyk, P.; Lenzen, M.; McNeely, J.; Moriguchi, Y. Assessing the Environmental Impacts of Consumption and Production: Priority Products and Materials, a Report of the Working Group on the Environmental Impacts of Products and Materials to the International Panel for Sustainable Resource Management; UNEP: Paris, France, 2010. [Google Scholar]
- Association of German Engineers (VDI). VDI 4800 Part 2: Resource Efficiency—Evaluation of the Use of Raw Materials; Beuth Verlag GmbH: Berlin, Germany, 2016; pp. 1–38. [Google Scholar]
- German Environment Agency (UBA). ProBas-Process-Oriented Basic Data for Environmental Management Systems. Available online: http://www.probas.umweltbundesamt.de/ (accessed on 27 October 2017).
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Srebotnjak, T.; Polzin, C.; Giljum, S.; Herbert, S.; Lutter, S. Establishing Environmental Sustainability Thresholds and Indicators; Ecologic Institute and SERI: Berlin, Germany, 2010; pp. 1–139. [Google Scholar]
- Giegrich, J.; Liebich, A.; Lauwigi, C.; Reinhardt, J. Indicators for the Use of Raw Materials in the Context of Sustainable Development in Germany; 01/2012; German Environment Agency (UBA): Dessau-Roßlau, Germany, 2012; pp. 1–248.
- Berger, M.; Finkbeiner, M. Correlation analysis of life cycle impact assessment indicators measuring resource use. Int. J. Life Cycle Assess. 2010, 16, 74–81. [Google Scholar] [CrossRef]
- Voet, E.; Oers, L.; Nikolic, I. Dematerialization: Not just a matter of weight. J. Ind. Ecol. 2004, 8, 121–137. [Google Scholar] [CrossRef]
- Huijbregts, M.A.J.; Rombouts, L.J.A.; Hellweg, S.; Frischknecht, R.; Hendriks, A.J.; van de Meent, D.; Ragas, A.M.J.; Reijnders, L.; Struijs, J. Is cumulative fossil energy demand a useful indicator for the environmental performance of products? Environ. Sci. Technol. 2006, 40, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Huijbregts, M.A.J.; Hellweg, S.; Frischknecht, R.; Hendriks, H.W.M.; Hungerbühler, K.; Hendriks, A.J. Cumulative energy demand as predictor for the environmental burden of commodity production. Environ. Sci. Technol. 2010, 44, 2189–2196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hertwich, E.G.; Van der Voet, E.; Tukker, B.; Tukker, A. Assessing the Environmental Impacts of Consumption and Production; United Nations Environment Programme: Paris, France, 2010; pp. 1–108. [Google Scholar]
- German Environment Agency (UBA). Domestic Extraction and Imports. Available online: https://www.umweltbundesamt.de/daten/rohstoffe-als-ressource/inlaendische-entnahme-von-rohstoffen#textpart-1 (accessed on 17 January 2017).
- Steinmann, Z.J.N.; Schipper, A.M.; Hauck, M.; Huijbregts, M.A.J. How many environmental impact indicators are needed in the evaluation of product life cycles? Environ. Sci. Technol. 2016, 50, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Drielsma, J.A.; Russell-Vaccari, A.J.; Drnek, T.; Brady, T.; Weihed, P.; Mistry, M.; Simbor, L.P. Mineral resources in life cycle impact assessment—Defining the path forward. Int. J. Life Cycle Assess. 2016, 21, 85–105. [Google Scholar] [CrossRef]
- Hotelling, H. The economics of exhaustible resources. J. Political Econ. 1931, 39, 137–175. [Google Scholar] [CrossRef]
- Costanza, R.; Cumberland, J.; Daly, H.; Goodland, R.; Norgaard, R. An Introduction to Ecological Economics; St. Lucie Press: Boca Rato, Nepal, 1997. [Google Scholar]
- Riedel, E.; Janiak, C. Anorganische Chemie; De Gruyter: Berlin, Germany, 2011. [Google Scholar]
- Diederen, A. Global Resource Depletion—Managed Austerity and the Elements of Hope; Eburon Academic Publishers: Delft, The Netherlands, 2010. [Google Scholar]
- Skinner, B.J. A second iron age ahead? The distribution of chemical elements in the earth’s crust sets natural limits to man’s supply of metals that are much more important to the future of society than limits on energy. Am. Sci. 1976, 64, 258–269. [Google Scholar]
- Skinner, B.J. Exploring the Resource Base. Presented at the workshop on “The Long-Run Availability of Minerals”, Washington, DC, USA, 22–23 April 2001; pp. 1–25. [Google Scholar]
- Bardi, U.; Randers, J. Extracted: How the Quest for Mineral Wealth is Plundering the Planet; A Reportnto the Club of Rome/Ugo Bardi; White River Junction: Windsor County, VT, USA; VT Chelsea Green Publishing: River Junction, VT, USA, 2014; p. 29. [Google Scholar]
- Giurco, D.; Prior, T.; Mudd, G.; Mason, L.; Behrisch, J. Peak Minerals in Australia: A Review of Changing Impacts and Benefits; Institute for Sustainable Futures University of Technology, Sydney & Department of Civil Engineering (Monash University): Sydney, Australia, 2010; pp. 1–110. [Google Scholar]
- Northey, S.; Mudd, G.M.; Weng, Z.; Mohr, S.; Giurco, D. Modelling future copp.er ore grade decline based on a detailed assessment of copp.er resources and mining. Resour. Conserv. Recycl. 2014, 83, 190–201. [Google Scholar] [CrossRef]
- Hubbert, M.K. Nuclear energy and the fossil fuels. In Drilling and Production Practice; American Petroleum Institute: New York, NY, USA, 1956; pp. 1–40. [Google Scholar]
- Sorrell, S.; Speirs, J.; Bentley, R.; Brandt, A.; Miller, R. Global Oil Depletion: An Assessment of the Evidence for Near-Term Peak in Global Oil Production; UK Energy Research Centre: London, UK, 2009; pp. 1–228. [Google Scholar]
- Sverdrup, H.U.; Ragnarsdottir, K.V.; Koca, D. An assessment of metal supp.ly sustainability as an input to policy: Security of supply, extraction rates, stocks-in-use, recycling, and risk of scarcity. J. Clean. Prod. 2017, 140, 359–372. [Google Scholar] [CrossRef]
- May, D.; Prior, T.; Cordell, D.; Giurco, D. Peak minerals: Theoretical foundations and practical application. Nat. Resour. Res. 2012, 21, 43–60. [Google Scholar] [CrossRef]
- Giraud, P.-N. A note on hubbert’s thesis on mineral commodities production peaks and derived forecasting techniques. Procedia Eng. 2012, 46, 22–26. [Google Scholar] [CrossRef]
- Rustad, J.R. Peak nothing: Recent trends in mineral resource production. Environ. Sci Technol. 2012, 46, 1903–1906. [Google Scholar] [CrossRef] [PubMed]
- Graedel, T.; Gunn, G.; Tercero Espinoza, L. Metal resources, use and criticality. In Critical Metals Handbook; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 1–19. [Google Scholar]
- Wellmer, F.W. Reserves and resources of the geosphere, terms so often misunderstood. Is the life index of reserves of natural resources a guide to the future? Z. Dtsch. Ges. Geowiss. 2008, 159, 575–590. [Google Scholar]
- Marscheider-Weidemann, F.; Langkau, S.; Hummen, T.; Erdmann, L.; Espinoza, L.T.; Angerer, G. Rohstoffe für Zukunftstechnologien 2016—Raw Materials for Emerging Technologies 2016; German Mineral Resources Agency DERA at the Federal Institute for Geosciences and Natural Resources BGR: Berlin, Germany, 2016; pp. 1–360.
- Schaffartzik, A.; Mayer, A.; Eisenmenger, N.; Krausmann, F. Global patterns of metal extractivism, 1950–2010: Providing the bones for the industrial society’s skeleton. Ecol. Econ. 2016, 122, 101–110. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Mineral Commodity Summaries 2016; U.S. Geological Survey: Reston, VA, USA, 2016; pp. 1–205.
- Graedel, T.E.; Harper, E.M.; Nassar, N.T.; Nuss, P.; Reck, B.K. Criticality of metals and metalloids. Proc. Natl. Acad. Sci. USA 2015, 112, 4257–4262. [Google Scholar] [CrossRef] [PubMed]
- Melcher, F.; Wilken, H. Die Verfügbarkeit von Hochtechnologie-Rohstoffen. Chem. Unserer Zeit 2013, 47, 32–49. [Google Scholar] [CrossRef]
- Gutzmer, J.; Klossek, A. Die Versorgung mit wirtschaftskritischen Rohstoffen—Eine Ursachensuche und -Analyse. In Strategische Rohstoffe—Risikovorsorge; Kausch, P., Bertau, M., Gutzmer, J., Matschullat, J., Eds.; Springer: Berlin, Germany, 2014; pp. 61–73. [Google Scholar]
- Nassar, N.; Graedel, T.; Harper, E. By-product metals are technologically essential but have problematic supp.ly. Sci. Adv. 2015, 1, 1–10. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Report on Critical Raw Materials for the EU—Critical Raw Material Profiles; European Commission: Brussels, Belgium, 2014; pp. 1–205. [Google Scholar]
- Graedel, T.E.; Barr, R.; Chandler, C.; Chase, T.; Choi, J.; Christoffersen, L.; Friedlander, E.; Henly, C.; Jun, C.; Nassar, N.T.; et al. Methodology of metal criticality determination. Environ. Sci. Technol. 2011, 46, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Buijs, B.; Sievers, H. Critical Thinking About Critical Minerals—Assessing Risks Related to Resource Scarcity; Federal Institute for Geosciences and Natural Resources BGR: Hannover, Germany, 2011; pp. 1–19. [Google Scholar]
- Buijs, B.; Sievers, H.; Espinoza, L.A.T. Limits to the critical raw materials app.roach. Proc. ICE Waste Res. Manag. 2012, 165, 201–208. [Google Scholar]
- Gandenberger, C.; Glöser, S.; Marscheider-Weidemann, F.; Ostertag, K.; Walz, R. Die Versorgung der Deutschen Wirtschaft Mit Roh—und Werkstoffen für Hochtechnologien—Präzisierung und Weiterentwicklung der Deutschen Rohstoffstrategie; Arbeitsbericht Nr. 150; TAB—Büro für Technikfolgen-Abschätzung beim Deutschen Bundestag: Berlin, Germany, 2012; pp. 1–238. (In German)
- Erdmann, L.; Graedel, T.E. Criticality of non-fuel minerals: A review of major approaches and analyses. Environ. Sci. Technol. 2011, 45, 7620–7630. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Report on Critical Raw Materials for the Eu; European Commission: Brussels, Belgium, 2014; pp. 1–41. [Google Scholar]
- Angerer, G.; Buchholz, P.; Gutzmer, J.; Hagelüken, C.; Herzig, P.; Littke, R.; Thauer, R.K.; Wellmer, F.-W. Rohstoffe für die Energieversorgung der Zukunft: Geologie—Märkte—Umwelteinflüsse; Deutsche Akademie der Technikwissenschaften (acatech): Berlin, Germany, 2016. [Google Scholar]
- Angerer, G.; Marscheider-Weidemann, F.; Lüllmann, A.; Erdmann, L.; Scharp, M.; Handke, V.; Marwede, M. Raw Materials for Emerging Technologies; The Influence of Sector-Specific Feedstock Demand on Future Raw Materials Consumption in Material-Intensive Emerging Technologies. Final Report Abridged; Fraunhofer Institute for Systems and Innovation Research ISI: Berlin, Germany, 2009; pp. 1–19. [Google Scholar]
- Rüttinger, L.; Sharma, V. Cimate Change and Mining; Adelphi Research: Berlin, Germany, 2016. [Google Scholar]
- Rüttinger, L.; Scholl, C.; Sharma, V.; Vogt, R.; Kämper, C. Klimress: Impacts of climate change on the ecological criticality of germany’s raw material demand (fkz: 3716 48 324 0). In Environmental Research Plan (UFOPLAN) of the Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety; German Environment Agency, Ed.; Adelphi Research & Ifeu—Institute for Energy and Environmental Research & The University of Queensland—Centre for Social Responsibility in Mining (CSRM): Dessau-Roßlau, Germany, 2017. [Google Scholar]
- Federal Ministry of Education and Research (BMBF). Raw Materials of Strategic Economic Importance for High-Tech Made in Germany—BMBF Research and Development Programme for New Raw Material Technologies; Federal Ministry of Education and Research (BMBF): Bonn, Germany, 2013; pp. 1–64.
- Coulomb, R.; Dietz, S.; Godunova, M.; Nielsen, T.B. Critical Minerals Today and in 2030; OECD Publishing: Paris, France, 2015. [Google Scholar]
- Gemechu, E.D.; Sonnemann, G.; Helbig, C.; Thorenz, A.; Tuma, A. Import-based indicator for the geopolitical supply risk of raw materials in life cycle sustainability assessments. J. Ind. Ecol. 2016, 20, 154–165. [Google Scholar] [CrossRef]
- Tuma, A.; Reller, A.; Thorenz, C.; Kolotzek, C.; Helbig, C. Nachhaltige Ressourcenstrategien in Unternehmen: Identifikation Kritischer Rohstoffe und Erarbeitung Von Handlungsempfehlunge zur Umsetzung Einer Ressourceneffizienten Produktion; University of Augsburg: Augsburg, Germany, 2014; pp. 1–63. [Google Scholar]
- Dehoust, G.; Manhart, A.; Vogt, R.; Kämper, C.; Giegrich, J.; Auberger, A.; Priester, M.; Dolega, P. Discussion of the Environmental Limits of Primary Raw Material Extraction and Development of a Method for Assessing the Environmental Availability of Raw Materials to Further Develop the Criticality Concept (ÖkoRess I)—Summary; German Environment Agency (UBA): Dessau-Roßlau, Germany, 2017; pp. 1–31.
- Dehoust, G.; Manhart, A.; Vogt, R.; Kämper, C.; Giegrich, J.; Priester, M.; Rechlin, A.; Rüttinger, L.; Scholl, C. ÖkoRess II: Further development of policy options for an ecological raw materials policy. In Environmental Research Plan (UFOPLAN) of the Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety; German Environment Agency, Ed.; Öko Institut—Institute for Applied Ecology; Ifeu—Institute for Energy and Environmental Research; Projekt-Consult; Adelphi Research: Dessau-Roßlau, Germany, 2017. [Google Scholar]
- Rüttinger, L.; Scholl, C. Responsible Mining? Challenges, Perspectives and Approaches—Summary of the Findings of the Research Project “Approaches to Reducing Negative Environmental and Social Impacts in the Production of Metal Raw Materials”; German Environment Agency (UBA): Dessau-Roßlau, Germany, 2017; pp. 1–37.
- Glöser, S.; Tercero Espinoza, L.; Gandenberger, C.; Faulstich, M. Raw material criticality in the context of classical risk assessment. Resour. Policy 2015, 44, 35–46. [Google Scholar] [CrossRef]
- Behrendt, S.; Scharp, M.; Erdmann, L.; Kahlenborn, W.; Feil, M.; Dereje, C.; Bleischwitz, R.; Delzeit, R. Rare Metal: Measures and Concepts for the Solution of the Problem of Conflict-Aggravating Raw Material Extraction—the Example of Coltan; German Environment Agency (UBA): Dessau-Roßlau, Germany, 2007.
- Franken, G.; Vasters, J.; Dorner, U.; Schütte, P.; Küster, D.; Nüher, U. Certified Trading Chains in Mineral Production. In Competition and Conflicts on Resource Use. Natural Resource Management and Policy; Hartard, S., Liebert, W., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume 46, pp. 177–186. [Google Scholar]
- Dupuy, R.; Roman, P.; Mougenot, B. Analyzing socio-environmental conflicts with a commonsian transactional framework: Application to a mining conflict in peru. J. Econ. Issues 2015, 49, 895–921. [Google Scholar] [CrossRef]
- Tänzler, D.; Westerkamp, M. Rohstoffkonflikte Nachhaltig Vermeiden; German Environment Agency (UBA): Dessau-Roßlau, Germany, 2010.
- Schandl, H.; Fischer-Kowalski, M.; West, J.; Giljum, S.; Dittrich, M.; Eisenmenger, N.; Geschke, A.; Lieber, M.; Wieland, H.P.; Schaffartzik, A.; et al. Global Material Flows and Resource Productivity; An Assessment Study of the UNEP; International Resource Panel; United Nations Environment Programme: Paris, France, 2016; p. 200. [Google Scholar]
- BIO by Deloitte. Study on Data for a Raw Material System Analysis: Roadmap and Test of the Fully Operational Msa for Raw Materials; Prepared for the European Commission, DG GROW; BIO by Deloitte: Neuilly-sur-Seine, France, 2015; pp. 1–179. [Google Scholar]
- United Nations. Rio Declaration on Environment and Development; United Nations General Assembly: Rio de Janeiro, Brazil, 1992. [Google Scholar]
- Bringezu, S.; Schütz, H.; Moll, S. Rationale for and interpretation of economy-wide materials flow analysis and derived indicators. J. Ind. Ecol. 2003, 7, 43–64. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission on the Precautionary Principle; COM(2000) 1 Final; European Commission: Brussels, Belgium, 2000; pp. 1–28. [Google Scholar]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, S.I.; Lambin, E.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J. Planetary boundaries: Exploring the safe operating space for humanity. Ecol. Soc. 2009, 14, 1–33. [Google Scholar] [CrossRef]
- Peduzzi, P. Sand, rarer than one thinks. In UNEP Global Environmental Alert Service (GEAS); United Nations Environment Programme: Nairobi, Kenya, 2014; pp. 1–15. [Google Scholar]
- European Commission. Stakeholder Consultation—Options for Resource Efficiency Indicators. Available online: http://ec.europa.eu/environment/resource_efficiency/targets_indicators/stakeholder_consultation/index_en.htm (accessed on 13 January 2017).
- Federal Office for the Environment. Development of Switzerland’s Worldwide Environmental Impact; Federal Office for the Environment: Bern, Switzerland, 2014.
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Müller, F.; Kosmol, J.; Keßler, H.; Angrick, M.; Rechenberg, B. Dematerialization—A Disputable Strategy for Resource Conservation Put under Scrutiny. Resources 2017, 6, 68. https://doi.org/10.3390/resources6040068
Müller F, Kosmol J, Keßler H, Angrick M, Rechenberg B. Dematerialization—A Disputable Strategy for Resource Conservation Put under Scrutiny. Resources. 2017; 6(4):68. https://doi.org/10.3390/resources6040068
Chicago/Turabian StyleMüller, Felix, Jan Kosmol, Hermann Keßler, Michael Angrick, and Bettina Rechenberg. 2017. "Dematerialization—A Disputable Strategy for Resource Conservation Put under Scrutiny" Resources 6, no. 4: 68. https://doi.org/10.3390/resources6040068
APA StyleMüller, F., Kosmol, J., Keßler, H., Angrick, M., & Rechenberg, B. (2017). Dematerialization—A Disputable Strategy for Resource Conservation Put under Scrutiny. Resources, 6(4), 68. https://doi.org/10.3390/resources6040068